首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the ionophore, X537A, and caffeine on ATP-dependent calcium transport by fragmented sarcoplasmic reticulum were studied in the absence (calcium storage) or presence (calcium uptake) of calcium-precipitating anions. The ionophore caused rapid calcium release after calcium storage, the final level of calcium storage being the same whether a given concentration of X537A was added prior to initiation of the reaction or after calcium storage had reached a steady state. Although 10 to 12 muM X537A caused approximately 90% inhibition of oxalate-supported calcium uptake when added prior to the start of the reaction, this ionophore concentration caused only a small calcium release when added after a calcium oxalate precipitate had formed within the vesicles, and only slight inhibition of calcium uptake velocity when added during the calcium uptake reaction. When low initial calcium loads limited calcium uptake to 0.4 mumol of calcium/mg of protein, subsequent calcium additions in the absence of the ionophore led to renewed calcium uptake. Uptake of the subsequent calcium additions was not significantly inhibited by 10 to 12 muM X537A. These phenomena are most readily understood in terms of constraints imposed by fixed Cai (calcium ion concentration inside the vesicles) on the pump-leak situation in sarcoplasmic reticulum vesicles containing a large amount of an insoluble calcium precipitate, where most of the calcium is within the vesicles and Cai is maintained at a relatively low level. These constraints restrict calcium loss after calcium permeability is increased because calcium release can end when the calcium pump is stimulated by the increased Cao (calcium concentration outside the vesicles) so as to compensate for the increased efflux rate. In contrast, an increased permeability in vesicles that have stored calcium in the absence of a calcium-precipitating ion causes a much larger portion of the internal calcium store to be released. Under these conditions calcium storage capacity is low so that release of stored calcium is less able to raise Cao to levels where the calcium pump can compensate for the increased efflux rate. The constraints imposed by anion-supported calcium uptake explain the finding that more calcium is released by X537A or caffeine when these agents are added at higher levels of Cao, and that more calcium leaves the vesicles in response to a given increase in calcium permeability at higher Cai. Although such calcium release is amplified by increased Cao, the amplification is attributable to the constraints described above and does not represent a "calcium-triggered calcium release."  相似文献   

2.
Calcium efflux and EGTA-induced calcium release from an internal platelet membrane fraction have been studied after the oxalate-supported calcium uptake had reached steady state. Increasing external calcium concentrations stimulate the calcium efflux velocity, with an apparent half-maximal stimulation at about 5 microM outside calcium concentration and a maximal velocity of calcium efflux of 4.66 +/- 2.32 nmol X min-1 X mg-1. Moreover, the ratio of the liberated calcium on the loaded calcium seems to be independent of the increasing external calcium concentration. Increasing the calculated internal calcium concentration by varying the oxalate potassium concentration from 10 mM to 1 mM results in an increase of the liberated calcium from the membrane vesicles from 7.4% to 63%, respectively, without changing the calcium efflux velocity. Similar conclusions can be drawn from the observation of results from the calcium efflux and EGTA-induced calcium release methods. Moreover, calcium pump reversal does not seem to be responsible for the calcium efflux or calcium release. All these different points added to the previously described regulation of calcium efflux by the catalytic subunit of cAMP protein kinase suggest us that the mechanism of calcium liberation by the platelet membranes is different from the calcium uptake.  相似文献   

3.
Both oxalate-supported and phosphate-supported calcium uptake by canine cardiac sarcoplasmic reticulum initially increase linearly with time but fall to a steady-state level within 20 min. The departure from linearity could be due to a decrease in influx or to an increase in efflux of calcium. Because Ca2+-ATPase activity is linear, a decrease in the influx of calcium is an unlikely cause of the non-linear calcium uptake curves. A possible cause of an increase in calcium efflux is rupture of the vesicles. This hypothesis was tested by investigating the amount of calcium which could be released upon addition of 5 mM EGTA. The amount of rapidly releasable calcium was zero until a threshold calcium uptake of about 4-6 mumol calcium oxalate or calcium phosphate per mg was reached. After that point the rapidly releasable calcium continued to increase with calcium oxalate to reach more than 23 mumol/mg, but stayed constant at about 0.7 mumol/mg for calcium phosphate. The rapidly releasable calcium was attributed to calcium oxalate or calcium phosphate crystals externalized by vesicle rupture. The differences in the amounts of rapidly releasable calcium were attributed to different kinetics of calcium phosphate and calcium oxalate dissolution. Addition of ryanodine caused a marked increase in the threshold for rapidly releasable calcium oxalate. Transmission electron micrographs showed that vesicles can become filled with calcium oxalate crystals, but the vesicles were heterogeneous with respect to their size and their sensitivity to ryanodine. These observations support the hypothesis that calcium oxalate and calcium phosphate capacities are limited by vesicle rupture and that ryanodine increases the capacity by closing a calcium channel in a subpopulation of vesicles that otherwise would not accumulate calcium.  相似文献   

4.
The recently introduced fluorescent calcium sensitive indicators calcium green, calcium orange and calcium crimson suggest important improvements and advantages to detect small calcium transients at low indicator concentrations. Thermodynamic dissociation constants and dissociation rate constants of calcium green, calcium orange and calcium crimson were measured by use of fluorescence titration and stopped flow fluorescence, respectively. Calcium binding to the indicators conforms to a 1:1 calcium:indicator complex although at high concentrations of calcium the fluorescence properties deviate somewhat from the behaviour predicted by the simple model. Dissociation of the calcium-indicator complex was found to be monoexponential under all conditions examined. The affinity for calcium of the three indicators generally increases with raising temperatures (Kd at 11.5 degrees C and 39.7 degrees C (nM): 261, 180 for calcium green; 527, 323 for calcium orange; 261, 204 for calcium crimson) and pH (Kd at pH 6.42 and 7.40 (nM): 314, 226 for calcium green; 562, 457 for calcium orange; 571, 269 for calcium crimson). The changes of the thermodynamic dissociation constant are mainly caused by changes of the association rate constant. The temperature dependence of calcium binding to the indicators revealed that this process is entropically favoured at ambient temperature.  相似文献   

5.
In many electrically nonexcitable cells, the release of calcium from internal stores is followed by a much slower phase in which the intracellular calcium concentration decreases gradually to a sustained value higher than the concentration before stimulation. This elevated calcium plateau has been shown to be the result of calcium influx. The model presented in this work describes a system consisting of a cytoplasmic calcium store and a plasma membrane calcium channel, both excitable by a membrane receptor; a fast cytoplasmic calcium buffer; and calcium pumps in both the calcium store and cellular membranes. Inherent difficulties in the numerical evaluation of the model, caused by very large calcium fluxes across the store membrane, were overcome by analytically separating the fast processes of calcium release from the slower processes of calcium cycling across the plasma membrane. This enabled the simulation of realistic biphasic calcium transients similar to those observed experimentally. The model predicted 1) a strong correlation between the rate of calcium cycling across the plasma membrane and the rate of calcium decay; and 2) a dependence on the level of cell excitation of the maximum rise in cytoplasmic calcium concentration, the level of the elevated calcium plateau, and the rate of calcium decay. Using the model, we simulated the washout of agonist from the bathing solution and the depletion of the calcium store by a pharmacological agent (such as thapsigargin) under several experimental conditions.  相似文献   

6.
Calcium entry through plasma membrane calcium channels is one of the most important cell signaling mechanism involved in such diverse functions as secretion, contraction and cell growth by regulating gene expression, proliferation and apoptosis. The identity of plasma membrane calcium channels, the main regulators of calcium entry, involved in cell proliferation has been thus extensively sought. Among these, a calcium entry pathway called capacitative calcium entry (CCE), activated by calcium store depletion, is particularly important in non-excitable cells. Though this capacitative calcium entry is generally supposed to occur through TRP channels there is some evidence that voltage-dependent T-type calcium channels may contribute to calcium entry after store depletion. Here we show that though mibefradil, a T-type calcium channel blocker, is able to reduce capacitative calcium entry induced by either thapsigargin or ATP, this was not mimicked by any other T-type calcium channel inhibitors even in cells overexpressing alpha(1H) T-type calcium channels, leading us to conclude that T-type calcium channels are not responsible for the capacitative calcium entry observed in different cancer cell lines. On the contrary, we show that the action of mibefradil on capacitative calcium entry is due to an action on store-operated calcium channels.  相似文献   

7.
The contribution of intracellular calcium stores to Mannheimia haemolytica leukotoxin (LKT)-induced increase in cytosolic calcium concentration was studied by pharmacologically inhibiting transport of calcium across the plasma and endoplasmic reticulum membranes of bovine neutrophils exposed to LKT. Active intracellular storage of calcium by sarcoplasmic/endoplasmic reticulum calcium ATPase, influx of extracellular calcium across the plasma membrane, and release of stored calcium via inositol triphosphate receptors and ryanodine-sensitive calcium channels were inhibited using thapsigargin, lanthanum chloride, xestospongin C, and magnesium chloride, respectively. Pre-incubation with thapsigargin attenuated the increase in cytosolic calcium concentration produced by LKT, thus confirming the involvement of intracellular calcium stores. Inhibitory effects of lanthanum chloride, xestospongin C, and magnesium chloride indicated that the increase in cytosolic calcium concentration induced by LKT resulted from both influx of calcium across the plasma membrane and release of calcium from intracellular stores.  相似文献   

8.
Calcium-bound phosphoryl oligosaccharides (POs-Ca) were prepared from potato starch. Their solubility and in situ absorbability as a calcium source were investigated by comparing with the soluble calcium compounds, calcium chloride and calcium lactate, or insoluble calcium compounds, calcium carbonate and dibasic calcium phosphate. The solubility of POs-Ca was as high as that of calcium chloride and about 3-fold higher than that of calcium lactate. An in situ experiment showed that the intestinal calcium absorption rate of POs-Ca was almost comparable with that of the soluble calcium compounds, and was significantly higher (p<0.05) than that of the insoluble calcium groups. Moreover, the total absorption rate of a 1:1 mixture of the calcium from POs-Ca and a whey mineral complex (WMC) was significantly higher (p<0.05) than that of WMC alone. These results suggest that POs-Ca would be a useful soluble calcium source with relatively high absorption in the intestinal tract.  相似文献   

9.
H G Smith  P M Capalbo 《Biochemistry》1985,24(15):4233-4239
Increasing the concentration of calcium in the external buffer flowing past isolated, intact bovine retinal rod outer segment disks immobilized in a flow system reduced the rate of radioactive calcium efflux from within the disks in the dark. We interpret these results as extradiskal calcium acting at an inhibitory binding site to block the calcium efflux. A Scatchard analysis of the external calcium dependence of the efflux yields an apparent dissociation constant of 50 microM, which further suggests that the inhibition is mediated by a specific membrane binding site. The observed inhibition of calcium efflux may represent a functional role for the high-affinity calcium binding site which has been identified by others in previous physical studies of the disk membrane. This external calcium inhibited permeability may explain some of the discrepancies in the reported calcium transport properties of disks. Variations in the external calcium concentration may alter the calcium content of isolated disks, thereby indirectly affecting other transport functions including the measured light-induced release of calcium. No evidence was found for either Na/Ca or Ca/Ca exchange processes across the disk membrane. Lanthanum was even more effective than calcium in inhibiting calcium efflux in the dark. Neither lanthanum nor calcium inhibited the light-induced efflux of calcium from disks, which implies either that light and extradiskal calcium regulate separate permeability processes in the disk membrane or that light greatly reduces the affinity of the inhibitory site for calcium and lanthanum.  相似文献   

10.
Calcitonin was studied in isolated kidney cells and in isolated mitochondria. A concentration of 10 ng/ml of synthetic calcitonin increases the cellular accumulation of 45Ca and the total cell calcium. The mitochondrial pool is increased several-fold. Kinetic analysis of the data shows that although the total cellular exchangeable calcium pool is enlarged, calcium influx and efflux are significantly depressed by calcitonin. The absence of phosphate or the presence of inhibitors of mitochondrial calcium transport completely abolish the effects of the hormone. In isolated mitochondria, the hormone stimulates the active calcium uptake and depresses the extramitochondrial calcium activity. Calcitonin counteracts the effects of cyclic AMP which stimulates the release of calcium from mitochondria and increases the extramitochondrial calcium activity. These data indicate that cellular calcium homeostasis is controlled by the mitochondrial calcium turnover. They suggest that calcitomin regulates the cell calcium metabolism and inhibits the transcellular calcium transport by stimulating the rate of calcium uptake by mitochondria which depresses cytoplasmic calcium activity.  相似文献   

11.
研究了黄花梨经浸钙处理后,果实钙形态转变及果胶含量、多聚半乳糖醛酸酶(PG)和果胶甲酯酶(PME)活力的变化,以及果实硬度的变化。结果表明:浸钙处理的果实总钙含量显著提高,其硬度明显高于对照,且有利于细胞膜透性的保持;梨果实中的NaCl溶性钙最多,其次是水溶性钙,醋酸溶性钙和HCl溶性钙含量较少。在果实贮藏21d时,水溶性钙含量有一个上升的过程,而NaCl溶性钙则有一个下降的过程。浸钙处理后,除醋酸溶性钙外,果实中的水、NaCl和HCl溶性钙含量均有显著的提高。浸钙处理明显抑制了果胶的降解进程与PG的活力,但对PME抑制作用不明显。浸钙处理能提高果实硬度可能与浸钙处理抑制了PG活力有关。  相似文献   

12.
N1E-115 mouse neuroblastoma cells were injected with the calcium indicator dye arsenazo III. Optical absorbance changes during voltage-clamp depolarization were used to examine the properties of the two calcium currents present in these cells. The rapidly inactivating calcium current (Moolenar and Spector, 1979b, Journal of Physiology, 292:307-323) inactivates by a voltage-dependent mechanism. The slowly inactivating calcium current is dominant in raising intracellular calcium during depolarizations to greater than -20 mV. Lowering the extracellular calcium concentration affects the two calcium currents unequally, with the slowly inactivating current being reduced more. Intracellular calcium falls very slowly (tau greater than 1 min) after a depolarization. The rapidly inactivating calcium current is responsible for a calcium action potential under physiological conditions. In contrast, it is unlikely that the slowly inactivating calcium current has an important electrical role. Rather, its function may be to add a further increment of calcium influx over and above the calcium influx through the rapidly inactivating calcium channels.  相似文献   

13.
M S Jafri  S Vajda  P Pasik    B Gillo 《Biophysical journal》1992,63(1):235-246
Cytosolic calcium oscillations occur in a wide variety of cells and are involved in different cellular functions. We describe these calcium oscillations by a mathematical model based on the putative electrophysiological properties of the endoplasmic reticulum (ER) membrane. The salient features of our membrane model are calcium-dependent calcium channels and calcium pumps in the ER membrane, constant entry of calcium into the cytosol, calcium dependent removal from the cytosol, and buffering by cytoplasmic calcium binding proteins. Numerical integration of the model allows us to study the fluctuations in the cytosolic calcium concentration, the ER membrane potential, and the concentration of free calcium binding sites on a calcium binding protein. The model demonstrates the physiological features necessary for calcium oscillations and suggests that the level of calcium flux into the cytosol controls the frequency and amplitude of oscillations. The model also suggests that the level of buffering affects the frequency and amplitude of the oscillations. The model is supported by experiments indirectly measuring cytosolic calcium by calcium-induced chloride currents in Xenopus oocytes as well as cytosolic calcium oscillations observed in other preparations.  相似文献   

14.
In land gastropods, calcium is precipitated in the shell, inconnective calcium cells which are largely distributed throughthe whole connective tissue, in epithelial calcium cells ofthe digestive gland, and in the calcium gland cells of the skinand the mantle collar. Calcium is taken up from the externalmedium by food and by absorption through the sole skin. To adaptto terrestrial life, these animals have to eliminate appreciableamounts of calcium for their protection and their reproduction.During the egg laying period, a calcium flux occurs throughthe epithelium of the reproductive tract in order to supplythe egg shell and the egg fluids. This egg calcium is takenup by the embryo. The maintenance of a positive calcium balancebetween its uptake and the loss is due to an important reservoirof easily mobilizable calcium in the form of calcium carbonate.This reservoir consists of the connective calcium cells whichare constantly able to accumulate or release calcium as longas calcium is locally available or required. The epithelialcalcium cells of the digestive gland are loaded with calciumphosphate; they are not a major calcium storage compartment,but have an essential function in detoxification. All of thecalcium movement occurring across cell membranes and throughepithelia concerns only calcium ions. All calcium movement canbe regarded either as on-off systems or as reversible systems,both of which are certainly controlled by complex processes  相似文献   

15.
The influence of calcium on the deformability of human granulocytes   总被引:2,自引:0,他引:2  
S Zaiss 《Biorheology》1990,27(5):701-709
Experiments were carried out to determine the importance of extra- and intracellular calcium for the deformability of granulocytes during filtration tests. At low calcium concentration (0.1 mM), granulocytes are more deformable than at the physiological free-calcium concentration of 1.25 mM. Increasing calcium concentrations up to 10 mM do not further impair the deformability. Parallel measurements of the intracellular calcium concentration by means of the fura fluorescence method were performed to explain this. Extracellular calcium concentrations between 1.25 mM and 10 mM had no influence on the intracellular calcium level. A lower extracellular calcium concentration (0.1 mM), however, decreased the intracellular calcium level. Therefore, the measurements of the intracellular calcium concentrations are consistent with the deformability results. Studies with the calcium entry blocker nifedipine suggested that a low intracellular calcium improves the deformability of granulocytes. It is concluded; (i) the physiological calcium concentration of 1.25 mM is stressful for isolated granulocytes, and (ii) the intracellular calcium level plays a crucial role in granulocyte deformability, i.e. the lower the intracellular calcium concentration the greater the deformability.  相似文献   

16.
We hypothesized that myosin light chain kinase (MLCK) links calcium release to activation of store-operated calcium entry, which is important for control of the endothelial cell barrier. Acute inhibition of MLCK caused calcium release from inositol trisphosphate-sensitive calcium stores and prevented subsequent activation of store-operated calcium entry by thapsigargin, suggesting that MLCK serves as an important mechanism linking store depletion to activation of membrane calcium channels. Moreover, in voltage-clamped single rat pulmonary artery endothelial cells, thapsigargin activated an inward calcium current that was abolished by MLCK inhibition. F-actin disruption activated a calcium current, and F-actin stabilization eliminated the thapsigargin-induced current. Thapsigargin increased endothelial cell permeability in the presence, but not in the absence, of extracellular calcium, indicating the importance of calcium entry in decreasing barrier function. Although MLCK inhibition prevented thapsigargin from stimulating calcium entry, it did not prevent thapsigargin from increasing permeability. Rather, inhibition of MLCK activity increased permeability that was especially prominent in low extracellular calcium. In conclusion, MLCK links store depletion to activation of a store-operated calcium entry channel. However, inhibition of calcium entry by MLCK is not sufficient to prevent thapsigargin from increasing endothelial cell permeability.  相似文献   

17.
M Naraghi  T H Müller    E Neher 《Biophysical journal》1998,75(4):1635-1647
The spatiotemporal profile of intracellular calcium signals is determined by the flux of calcium ions across different biological membranes as well as by the diffusional mobility of calcium and different calcium buffers in the cell. To arrive at a quantitative understanding of the determinants of these signals, one needs to dissociate the flux contribution from the redistribution and buffering of calcium. Since the cytosol can be heterogeneous with respect to its calcium buffering property, it is essential to assess this property in a spatially resolved manner. In this paper we report on two different methods to estimate the cellular calcium binding of bovine adrenal chromaffin cells. In the first method, we use voltage-dependent calcium channels as a source to generate calcium gradients in the cytosol. Using imaging techniques, we monitor the dissipation of these gradients to estimate local apparent calcium diffusion coefficients and, from these, local calcium binding ratios. This approach requires a very high signal-to-noise ratio of the calcium measurement and can be used when well-defined calcium gradients can be generated throughout the cell. In the second method, we overcome these problems by using calcium-loaded DM-nitrophen as a light-dependent calcium source to homogeneously and quantitatively release calcium in the cytosol. By measuring [Ca2+] directly before and after the photorelease process and knowing the total amount of calcium being released photolytically, we get an estimate of the fraction of calcium ions which does not appear as free calcium and hence must be bound to either the indicator dye or the endogenous calcium buffer. This finally results in a two-dimensional map of the distribution of the immobile endogenous calcium buffer. We did not observe significant variations of the cellular calcium binding at a spatial resolution of approximately 2 micron. Furthermore, the calcium binding is not reduced by increasing the resting [Ca2+] to levels as high as 1.1 microM. This is indicative of a low calcium affinity of the corresponding buffers and is in agreement with a recent report on the affinity of these buffers (Xu, T., M. Naraghi, H. Kang, and E. Neher. 1997. Biophys. J. 73:532-545). In contrast to the homogeneous distribution of the calcium buffers, the apparant calcium diffusion coefficient did show inhomogeneities, which can be attributed to restricted diffusion at the nuclear envelope and to rim effects at the cell membrane.  相似文献   

18.
Calcium metabolism was investigated in HeLa cells. 90% of the calcium of the cell monolayer is bound to an extracellular cell coat and can be removed by trypsin-EDTA. The calcium concentration of the naked cell, freed from its coat, is 0.47 mM. The calcium concentration of the medium does not affect the concentration of the naked cell calcium. However, the calcium of the cell coat is proportional to the calcium concentration in the medium. Calcium uptake into the cell coat increases with increasing calcium concentration of the medium, whereas uptake by the naked cell is independent of the calcium of the medium. Anaerobic conditions and metabolic inhibitors do not inhibit calcium uptake by the cell, a fact suggesting that this transfer is a passive phenomenon. The calcium in the extracellular cell coat, was not affected by parathyroid hormone. In contrast, the hormone increased the cellular calcium concentration by stimulating calcium uptake or by enhancing calcium binding to some cell components. These results suggest that, contrary to current thinking, parathyroid hormone influences the cellular calcium balance by mobilizing calcium from the extracellular fluids in order to increase its concentration in some cellular compartment. It is proposed that these effects can enhance calcium transport.  相似文献   

19.
In order to minimize hybridoma cell damage during calcium alginate entrapment, the effect of calcium chloride treatment on hybridoma cell viability and growth was studied in terms of calcium chloride concentration and treatment time. The cell viability as measured by trypan blue exclusion did not decrease rapidly during the first hour of calcium chloride treatment regardless of calcium chloride concentrations used (1.3 and 1.5%). However, 1.3% calcium chloride solution appeared to be more detrimental to the cells than 1.5% calcium chloride solution. The cells in 1.3% calcium chloride solution lost their viability faster than the cells in 1.5% calcium chloride solution. In addition, when the cells treated with calcium chloride were inoculated into spinner flasks containing IMDM with 10% fetal calf serum, the cells treated with 1.3% calcium chloride solution showed a longer lag phase than the cells treated with 1.5% calcium chloride solution.  相似文献   

20.
Transepithelial transport of calcium involves uptake at the apical membrane, movement across the cell, and extrusion at the basolateral membrane. Active vitamin D metabolites regulate the latter two processes by induction of calbindin D and the plasma membrane ATPase (calcium pump), respectively. The expression of calbindin D and the calcium pump declines with age in parallel with transepithelial calcium transport. The apical uptake of calcium is thought to be mediated by the recently cloned calcium channels-CaT1 (or ECaC2, TRPV6) and CaT2 (or ECaC1, TRPV5). The purpose of these studies was to determine whether there were age-related changes in intestinal calcium channel regulation and to identify the dietary factors responsible for their regulation. Young (2 months) and adult (12 months) rats were fed either a high calcium or low calcium diet for 4 weeks. The low calcium diet significantly increased duodenal CaT1 and CaT2 mRNA levels in both age groups, but the levels in the adult were less than half that of the young. The changes in calcium channel expression with age and diet were significantly correlated with duodenal calcium transport and with calbindin D levels. To elucidate the relative roles of serum 1,25(OH)2D3 and calcium in the regulation of calcium channel expression, young rats were fed diets containing varying amounts of calcium and vitamin D. Dietary vitamin D or exogenous 1,25(OH)2D3 more than doubled CaT1 mRNA levels, and this regulation was independent of dietary or serum calcium. These findings suggest that the apical calcium channels, along with calbindin and the calcium pump, may play a role in intestinal calcium transport and its modulation by age, dietary calcium, and 1,25(OH)2D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号