首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine gene effects in the peripheral and central neural mediation of colour preferences in artificially selected Japanese quail chicks (Coturnix coturnix japonica). Behavioural data indicated preferences of blue over red and red over blue in the respectively selected genetic lines, and general preferences for white in both lines. Preferences were influenced by luminance variations of testing stimuli. Choices between segmented stimuli that combined blue, red, and white, in various patterns of systematically varied hues and luminances, indicated perceptual discrimination of colours in each line. Preference values combined within stimuli summated additively in choice responses, suggesting no genetic association between colour preference and colour perception. Electrophysiological data indicated systematic differences between waveshapes of averaged evoked potentials according to hues of eliciting stimuli. These data also counterindicated the involvement of colour perception in the genetic variations of colour preference. However, no significant differences between waveshapes were found in relation to genetic variations in preferences.  相似文献   

2.
Colour is an important factor in food detection and acquisition by animals using visually based foraging. Colour can be used to identify the suitability of a food source or improve the efficiency of food detection, and can even be linked to mate choice. Food colour preferences are known to exist, but whether these preferences are heritable and how these preferences evolve is unknown. Using the freshwater fish Poecilia reticulata, we artificially selected for chase behaviour towards two different-coloured moving stimuli: red and blue spots. A response to selection was only seen for chase behaviours towards the red, with realized heritabilities ranging from 0.25 to 0.30. Despite intense selection, no significant chase response was recorded for the blue-selected lines. This lack of response may be due to the motion-detection mechanism in the guppy visual system and may have novel implications for the evolvability of responses to colour-related signals. The behavioural response to several colours after five generations of selection suggests that the colour opponency system of the fish may regulate the response to selection.  相似文献   

3.
Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females’ tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females.  相似文献   

4.
《Animal behaviour》1988,36(4):961-969
Fruit preferences of cedar waxwings, Bombycilla cedrorum, in the laboratory were compared with preferences in the field to identify fruit characteristics that influence choice by avian dispersers. Waxwings ate 12 of 13 species of fruits offered individually in laboratory tests, but in the field ate only eight of the same 13 species. When given a choice of 10 fruit species offered simultaneously, waxwings showed a strong preference for fruits that were small or red. Preferences for fruit species in the laboratory were not correlated with morphological or nutritional characteristics of the fruits. When offered food that differed only in colour, waxwings initially preferred red over blue, yellow and green. In later tests, preference for red fruit was less marked. In tests for size preference, waxwings preferred small pieces of fruit (6 mm) over medium pieces (9 mm), and medium pieces over those that were large (12 mm). Sizes of fruits preferred in the field and in the laboratory tests were approximately 6·0–7·5 mm. Thus, waxwings can discern differences in food items and they have definite preferences. The lack of complete agreement between preferences for fruits in the field and in the laboratory suggests that factors important in the field but controlled in the laboratory (e.g. abundance, location) override preferences for certain fruits. However, some fruit characteristics, particularly size, were consistently influential in the laboratory and in the field.  相似文献   

5.
Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish.  相似文献   

6.
A behavioral-history procedure was used to study the function of terminal-link stimuli as conditioned reinforcers in multiple concurrent-chain schedules of reinforcement. First, three pigeons were exposed to multiple concurrent-chain schedules in which the two multiple-schedule components were correlated with a blue and a white stimulus, respectively. In each component the initial links were equal independent variable-interval (VI) 15 s schedules. A fixed-interval (FI) 10 s schedule operated on the red key in one terminal link while extinction operated on the green key in the alternative terminal link. When large preferences for the red stimulus had been established, two tests were conducted. In the terminal-link test, under new initial-link stimuli--purple and brown--an FI 10 s schedule operated for both the red and green terminal-link stimuli. In the subsequent initial-link test, the blue and white initial-link stimuli were reintroduced, and, as in the terminal-link test, FI 10s operated for both the red and the green terminal-link stimuli. In the terminal-link test, the three pigeons showed no preference for the terminal links with the red stimulus, but showed clear and consistent preferences for the red stimulus when blue and white stimuli were reintroduced as initial-link stimuli in the initial-link test. This suggests that there are multiple sources of control over initial-link response allocation in concurrent-chains, including control by both terminal- and initial-link stimuli.  相似文献   

7.
Red is a common colour signal in both aposematic warning displays, and in fruit displays. One common feature is that red is conspicuous against the natural background of the prey and fruits. However, there is a potential conflict between fruits and aposematic prey in how a bird predator should react to red colours, where fruits aim to attract birds and aposematic insects aim to ward off, often the same bird individuals. Here we investigate possible differences in red/green colour preferences of frugivorous, wild-caught, young blackcaps (Sylvia atricapilla), when food is either a fruit or an insect. Birds in two groups were presented with a series of pairs of food items that had been artificially painted red and green, in the order of (I) fruits, crickets and maggots, or (II) crickets, fruits, and maggots. Birds first presented with crickets or fruits differed in first attacks directed at the two colours: They showed no colour preference between fruits, but showed a clear preference for green over red crickets. Also, birds in both experimental groups clearly preferred green to red maggots. These results provide evidence that wild, frugivorous birds are able to differentiate between prey types, and show different colour preferences depending on whether food is insect or fruit. We conclude that blackcaps show an attack bias against red insects, and that one important function of the signal in insects, is to inhibit attack after discovery. However, the lack of preference for red fruits suggests other functions to red fruit displays, such as facilitating discovery per se, rather than directly stimulating attack after discovery.  相似文献   

8.
It is well known that development of vision is affected by experience, but there are few studies of environmental effects on colour vision. Natural scenes contain predominantly a restricted range of reflectance spectra, so such effects might be important, perhaps biasing visual mechanisms towards common colours. We investigated how the visual environment affects colour preferences of domestic chicks ( Gallus gallus), by training week-old birds to select small food containers distinguished from an achromatic alternative either by an orange or by a greenish-blue colour. Chicks that had been raised in control conditions, with long-wavelength-dominated reflectance spectra, responded more readily to orange than to blue. This was not due to avoidance of blue, as increasing saturation enhanced the chicks' preference for the same hue. The advantage of orange was, however, reduced or abolished for chicks raised in an environment dominated by blue objects. This indicates that responses to coloured food are affected by experience of non-food objects. If colours of ordinary objects in the environment do influence responses to specialised visual signals this might help explain why biological signals directed at birds are often coloured yellow, orange or red; long-wavelength-dominated spectra being more prevalent than short-wavelength-dominated spectra.  相似文献   

9.
Learning allows animals to adaptively adjust their behaviour in response to variable but predictable environments. Stable aspects of the environment may result in evolved or developmental biases in the systems impacting learning, allowing for improved learning performance according to local ecological conditions. Guppies (Poecilia reticulata), like many animals, show striking colour preferences in foraging and mating contexts and guppy artificial selection experiments have found that the form and progress of evolved responses to coloured stimuli differ depending on stimulus colour. Blue colouration is thought to typically be a relatively unimportant food cue in guppies. This raises the possibility that learned foraging associations with blue objects are formed less readily than with other colours. Here, guppies were rewarded for foraging at green or blue objects in two experiments. Guppies readily foraged from these objects, but learning performance differed with rewarded object colour. With equal amounts of training, the preference for green objects became stronger than the preference for blue objects. These differences in performance were not attributable to differences in initial preferences or to foraging more on one colour during training. These findings suggest that associative pairings within a single sensory modality that do not have a historic relevancy can be more difficult for animals to learn even when there is no clear initial bias present.  相似文献   

10.
《Journal of Asia》2019,22(1):25-32
Thrips tabaci (Lindeman) is an important polyphagous pest, and vector of Tomato spotted wilt virus responsible for sporadic, but devastating epidemics in potato. T. tabaci shows significant preferential differences between potato cultivars that may be important for field resistance. To investigate the role of visual cues in host choice we tested colour preference using two-choice assays. Thrips tabaci showed a significant preference for mid-green over red, blue, and white coloured cards, a preference for both light-green and mid-green over dark-green, and light-green over yellow, but no preferential difference between mid-green and yellow, and between light-green and mid-green. Analysis of the spectral reflectance of potato cultivars differing in thrips preference, revealed significant differences within the 400–700 nm wavelengths. In most cases cultivars preferred by T. tabaci had lighter green foliage and higher reflectance at 552 nm, and thus colour preference may be important for host selection. Oviposition choice of T. tabaci for potato cultivars was determined from counts of larvae and unhatched eggs from leaf disks under choice and no-choice conditions. In contrast to the colour choice experiments, onion thrips showed oviposition preference for cultivars with darker green foliage and lower reflectance at 552 nm.  相似文献   

11.
Summary A new training and testing paradigm for walking sheep blowflies, Lucilia cuprina, is described. A fly is trained by presenting it with a droplet of sugar solution on a patch of coloured paper. After having consumed the sugar droplet, the fly starts a systematic search. While searching, it is confronted with an array of colour marks consisting of four colours displayed on the test cardboard (Fig. 1). Colours used for training and test include blue, green, yellow, orange, red, white and black.Before training, naive flies are tested for their spontaneous colour preferences on the test array. Yellow is visited most frequently, green least frequently (Table 2). Spontaneous colour preferences do not simply depend on subjective brightness (Table 1).The flies trained to one of the colours prefer this colour significantly (Figs. 5 and 9–11). This behaviour reflects true learning rather than sensitisation (Figs. 6–7). The blue and yellow marks are learned easily and discriminated well (Figs. 5, 9, 11). White is also discriminated well, although the response frequencies are lower than to blue and yellow (Fig. 11). Green is discriminated from blue but weakly from yellow and orange (Figs. 5, 9, 10). Red is a stimulus as weak as black (Figs. 8, 9). These features of colour discrimination reflect the spectral loci of colours in the colour triangle (Fig. 14).The coloured papers seem to be discriminated mainly by the hue of colours (Fig. 12), but brightness may also be used to discriminate colour stimuli (Fig. 13).  相似文献   

12.
Colour preferences of flower-naive honeybees   总被引:1,自引:0,他引:1  
Flower-naive honeybees Apis mellifera L. flying in an enclosure were tested for their colour preferences. Bees were rewarded once on an achromatic (grey, aluminium or hardboard), or on a chromatic (ultraviolet) disk. Since naive bees never alighted on colour stimuli alone, a scent was given in combination with colour. Their landings on twelve colour stimuli were recorded. Results after one reward (“first test”) were analysed separately from those obtained after few rewards (“late tests”).
  1. After pre-training to achromatic signals, bees preferred, in the first test, bee-uv-blue and bee-green colours. With increasing experience, the original preference pattern persisted but the choice of bee-blue and bee-green colours increased.
  2. Neither colour distance of the test stimuli to the background or to the pre-training signal, nor their intensity, nor their green contrast, accounted for the colour choice of bees. Choices reflected innate preferences and were only associated with stimulus hue.
  3. Bees learned very quickly the pre-trained chromatic stimulus, the original colour preferences being thus erased.
  4. Colour preferences were strongly correlated with flower colour and its associated nectar reward, as measured in 154 flower species.
  5. Colour preferences also resemble the wavelength dependence of colour learning demonstrated in experienced bees.
  相似文献   

13.
Two lines of quail (Cotumix coturnix japonicus) were selected over three generations for the speed of their response to the red colour form of the two-spot ladybird beede (Adalia bipunctata), an aposematic, semi-palatable prey insect. One line was bred for fast recruitment of die new prey into the diet and die odier for slow recruitment. Differences between the lines suggested additive genetic variation. The birds' response to insect prey with different colour patterns and toxicities (brown beetles, green butterfly pupae, melanic two-spot ladybirds and toxic seven-spot ladybirds) demonstrated that die selection involved a specific response to novel prey. The results are discussed in relation to predator strategy and the evolution of aposematism.  相似文献   

14.
Variation in mating preferences coupled with selective predation may allow for the maintenance of alternative mating strategies. Males of the South American live‐bearing fish Poecilia parae fall in one of five discrete morphs: red, yellow, blue, stripe‐coloured tail (parae) and female mimic (immaculata). Field surveys indicate that the red and yellow morphs are the rarest and that their rarity is consistent across years. We explored the role of variable female mating preference and selective predation by visual predators in explaining the rarity of red and yellow males, and more generally, the maintenance of this extreme colour polymorphism. We presented wild‐caught P. parae females and Aequidens tetramerus, the most common cichlid predator, with the five male colour morphs in separate trials to determine mating and prey preferences, respectively. We found that a large proportion of females shared a strong preference for the rare carotenoid‐based red and yellow males, but a distinct group also preferred the blue and parae morphs. The cichlid predator strongly preferred red and yellow males as prey. Together, these results suggest that the interaction between premating sexual selection favouring and predation acting against the red and yellow morphs may explain their rarity in the wild. The trade‐off between sexual and natural selection, accompanied by variation in female mating preferences, may therefore facilitate the maintenance of the striking colour polymorphism in P. parae.  相似文献   

15.
The dramatic colours of biological communication signals raise questions about how animals perceive suprathreshold colour differences, and there are long-standing questions about colour preferences and colour categorization by non-human species. This study investigates preferences of foraging poultry chicks (Gallus gallus) as they peck at coloured objects. Work on colour recognition often deals with responses to monochromatic lights and how animals divide the spectrum. We used complementary colours, where the intermediate is grey, and related the chicks' choices to three models of the factors that may affect the attractiveness. Two models assume that attractiveness is determined by a metric based on the colour discrimination threshold either (i) by chromatic contrast against the background or (ii) relative to an internal standard. An alternative third model is that categorization is important. We tested newly hatched and 9-day-old chicks with four pairs of (avian) complementary colours, which were orange, blue, red and green for humans. Chromatic contrast was more relevant to newly hatched chicks than to 9-day-old birds, but in neither case could contrast alone account for preferences; especially for orange over blue. For older chicks, there is evidence for categorization of complementary colours, with a boundary at grey.  相似文献   

16.
【目的】明确青斑蝶Tirumala limniace雌、雄成虫对颜色的偏好性,可以为此蝴蝶人工饲养时的合理环境条件设定提供必要的理论支持。【方法】本研究通过在室内和野外对青斑蝶成虫对6种颜色(白色、红色、绿色、黄色、蓝色和紫色)光源的选择行为进行观察,明确青斑蝶成虫对不同颜色的偏好性。【结果】(1)在室内和在野外雌、雄成虫均优先选择黄色。(2)雌雄成虫在野外无其它光源干扰下对黄色的选择性强于室内。(3)单色光源照明和多种不同颜色光源同时存在下,成虫对颜色的偏好程度存在差异:当只有单色光源照明时,成虫对颜色的偏好程度为黄色>绿色=红色≥蓝色≥紫色;当不同颜色光源同时存在时,成虫对颜色的偏好程度则为黄色>蓝色≥绿色=红色≥紫色。(4)在不同颜色光源同时存在时,配对后的雌成虫表现出了比雄成虫更强的颜色选择性:雌成虫对黄色光源的选择性强于雄成虫,且其未产生颜色选择的成虫数量也少于雄成虫。【结论】青斑蝶成虫存在对黄色选择的颜色恒常性,野外成虫对颜色的选择性强于室内,雌、雄成虫对偏好颜色选择性存在性别差异。  相似文献   

17.
The ability of four horses (Equus caballus) to discriminate coloured (three shades of blue, green, red, and yellow) from grey (neutral density) stimuli, produced by back projected lighting filters, was investigated in a two response forced-choice procedure. Pushes of the lever in front of a coloured screen were occasionally reinforced, pushes of the lever in front of a grey screen were never reinforced. Each colour shade was randomly paired with a grey that was brighter, one that was dimmer, and one that approximately matched the colour in terms of brightness. Each horse experienced the colours in a different order, a new colour was started after 85% correct responses over five consecutive sessions or if accuracy showed no trend over sessions. All horses reached the 85% correct with blue versus grey, three horses did so with both yellow and green versus grey. All were above chance with red versus grey but none reached criterion. Further analysis showed the wavelengths of the green stimuli used overlapped with the yellow. The results are consistent with histological and behavioural studies that suggest that horses are dichromatic. They differ from some earlier data in that they indicate horses can discriminate yellow and blue, but that they may have deficiencies in discriminating red and green.  相似文献   

18.
Capsicum annuum L. cv. Ramillete fruits grown in the field were covered 60 d after flowering with “white”, yellow, red and blue cellophane filters. Two other sets were left in full sunlight and under cover, respectively. After 30 d of treatment, during the ripening period, the contents of individual carotenoids were analyzed. The red radiation was the most effective to increase the carotenoid biosynthesis, but the green and blue radiations inhibited their production. Either class of filters inhibited the formation of capsanthin, the most important carotenoid in the production of red colour of the maturation, but capsorubin, the other carotenoid responsible for the maturation colour, was more enhanced in the shade and under red radiation. Neither type of radiation was so efficient in increasing the total carotenoids content as the full sun radiation.  相似文献   

19.
Insect attraction to host plants may be partly mediated by visual stimuli. In the present study, the responses of adult Hycleus apicicornis (Guér.) (Coleoptera: Meloidae) to plant models of different colours, different combinations of two colours, or three hues of blue of different shapes are compared. Single‐colour models comprised the colours sky blue, bright green, yellow, red, white and black. Sky blue (reflecting light in the 440–500 nm region) is the most attractive, followed by white, which reflects light over a broader range (400–700 nm). On landing on sky blue targets, beetles exhibit feeding behaviour immediately. When different hues of blue (of different shapes) are compared, sky blue is preferred over turquoise, followed by dark blue, indicating that H. apicicornis is more attracted to lighter hues of blue than to darker ones. No significant differences are found between the three shapes (circle, square and triangle) tested, suggesting that reflectance associated with colour could be a more important visual cue than shape for host location by H. apicicornis. The preference of H. apicicornis for sky blue can be exploited in designing an attractive trap for its management.  相似文献   

20.
Receiver biases towards specific sensory signals have been demonstrated in insects, birds and fish, both in the context of foraging and mate choice. In some cases, signals important in sexual selection appear to have evolved by exploiting a pre-existing bias in the sensory system. For instance, female preferences for male nuptial colouration may have arisen from selection on foraging practices. Using the zebrafish ( Danio rerio ), a species in which red is not a factor in mate choice, we tested for a foraging bias towards the colour red. We further investigated the plasticity of foraging biases by raising groups of fish on diets consisting solely of red, blue, green or white food. When we subsequently tested their colour preferences in a foraging context, each group responded most strongly to red, irrespective of the colour of food with which they had been conditioned. We also detected a significant effect of conditioning on colour preferences; fish responded more strongly to the colour that matched diet colour than to other colours. The observed receiver bias towards red may have evolved as an adaptive preference for carotenoid compounds in their diet. While the bias to red appears to be innate, our results indicate that learning is also important in shaping foraging biases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号