首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and specific assay method for cysteine sulfinic acid (CSA) and cysteic acid (CA) using high-performance liquid chromatography has been developed. The method includes post-column derivatization of various amino acids with o-phthalaldehyde in the presence of 2-mercaptoethanol. The column packed with cation-exchange resin (ISC-07S1504, Shimadzu Sci entific instruments, Inc., Kyoto, Japan) was used for obtaining general separation of amino acids except CSA and CA, while the separation of CSA and CA was achieved using a strong-base anion exchange (ISA-07S2504, Shimadzu Scientific Instruments) column. The fluorescence peak area for CSA was linear between 20 pmol and 5 nmol, whereas that for CA was 10 pmol to 5 nmol. The regional distribution of CSA, CA, and other amino acids in the rat brain was studied using this new assay method.  相似文献   

2.
Rats were trained for 20 days to eat their normal daily meal in a period of 2 hours. On the twentyfirst day they received a diet in which tryptophan was omitted instead of the usual balanced diet. The ingestion of the tryptophan-free diet produced a marked depletion of free serum tryptophan (90%), brain tryptophan (85%), brain 5-HT (58%) and brain 5-HIAA (76%). These changes were almost maximal within 2 hours after food presentation and persisted for more than 24 hours. The mechanism of these changes is discussed.  相似文献   

3.
W H Lyness 《Life sciences》1982,31(14):1435-1443
An assay has been developed for brain tryptophan using reverse-phase liquid chromatography with electrochemical detection. The method simultaneously assays dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), as well as 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). The method does not require elution from ion exchange resins. After deproteinization and centrifugation samples are injected directly onto the chromatographic column. It was found that small changes in mobile phase pH markedly influenced the retention time of tryptophan while elution of the indoleamines and catecholamines did not change. The assay of these endogenous compounds in a single injection proved not expedient but inexpensive. Values obtained using alumina and ion exchange resins yielded comparable values.  相似文献   

4.
A microbore liquid chromatographic assay with dual electrochemical detection is described for the determination of serotonin and its metabolite 5-hydroxyindoleacetic acid in rat brain dialysates. The concentration of serotonin in these samples is usually in the low nanomolar range (fmol per 20 μl range). To optimize separation and detection, several adaptations were made to the system with respect to the injection valve, flow-rate of the pump, connections between injector, column and detector, and cell volume of the detector. These aspects are discussed, as well as the procedure developed for optimal peak identification of serotonin and correct estimation of 5-hydroxyindoleacetic acid. The assay allows the measurement of basal serotonin release without the use of a re-uptake inhibitor added to the perfusion fluid.  相似文献   

5.
A novel and highly sensitive method has been developed for the determination of catecholamines [noradrenaline (NA), dopamine (DA), serotonin (5-HT) and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA)] in brain tissue. The method uses isocratic reversed-phase HPLC with amperometric end-point detection. The calibration curve was linear over the range 10–150 pg on-column. The assay limits of detection for NA, DA, 5-HT, 5-HIAA and HVA were 3.8, 3.8, 6.8, 5 and 7.5 pg on-column, respectively. The mean inter- and intra-assay relative standard deviations (RSDs) over the range of the standard curve were less than 5%. The absolute recoveries averaged 99.1%, 99.5%, 97.7%, 99.5% and 98.8% for NA, DA, 5-HT, 5-HIAA and HVA, respectively.  相似文献   

6.
An improved high-performance liquid chromatographic method with electrochemical detection (HPLC-EC) for the simultaneous determination of 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) in cerebrospinal fluid (CSF) of humans and nonhuman primates is described. Quantitation is based on the use of an internal standard, 5-fluoro-HVA. Sample preparation consists of mixing an aliquot of CSF with a solution of the internal standard followed by ultrafiltration. The precision of the method is high, with within-run and between-run coefficients of variation of 2-6% and less than 10%, respectively, in the concentration ranges of the metabolites encountered in human lumbar CSF. Accuracy was tested by comparing the present HPLC method with specific gas chromatographic-mass spectrometric (GS-MS) assays for MHPG and HVA and a GC-MS-validated HPLC assay for 5-HIAA: the correlations obtained were 0.968 for MHPG, 0.989 for 5-HIAA, and 0.999 for HVA, with no systematic bias between the methods. The use of ascorbate as a preserving agent for monoamine metabolites in CSF was not found to be necessary when proper care was exercised in sample handling and storage. The analysis of samples with up to 2% ascorbic acid was possible as well, but MHPG had to be assayed separately using an extraction procedure and an alternative internal standard, 3-ethoxy-4-hydroxyphenylglycol.  相似文献   

7.
8.
In order to determine the effect of dietary tryptophan level on plasma and brain tryptophan, brain serotonin, and brain 5-hydroxyindoleacetic acid levels, juvenile rainbow trout (Salmo gairdneri) were raised for 16 weeks on semipurified diets containing 0.06%, 0.16%, 0.21%, 0.26%, 0.39%, or 0.59% tryptophan. After 14 weeks, feed intake was depressed in fish fed the diets containing 0.06% or 0.16% tryptophan. No further differences in feed intake were noted between the remaining treatments. In addition, body weight was lower in fish fed diets containing 0.06%, 0.16%, or 0.21% tryptophan compared with fish fed higher levels. After 16 weeks of feeding the test diets, plasma tryptophan levels were found to be directly related to dietary tryptophan levels. Similarly, increased dietary levels of tryptophan resulted in increased brain levels of tryptophan, serotonin, and 5-hydroxyindoleacetic acid. These results demonstrate that in rainbow trout, as in mammals, altered dietary levels of tryptophan result in alterations in plasma and brain tryptophan, brain serotonin, and brain 5-hydroxyindoleacetic acid.  相似文献   

9.
A new method for the determination of tryptophan and its metabolites in a single mouse brain using high-performance liquid chromatography (HPLC) with fluorometric detection is described. Tryptophan, serotonin, 5-hydroxyindoleacetic acid, indoleacetic acid, and tryptophol were clearly separated by a C8 reverse-phase column. Tissue preparation is performed only to centrifuge homogenates of brain prior to the injection to HPLC. The sensitivity is in the range from 10 to 15 pg.  相似文献   

10.
A new, sensitive, and specific assay method for guanine nucleotides using high-performance liquid chromatography with dual-electrochemical detection was developed. GTP, GDP, GMP, and cyclic GMP were separated with reversed-phase "ion-pair" chromatography and detected by a dual-electrochemical detector. Only guanine nucleotides among all purine and pyrimidine nucleotides responded to the electrochemical detector at 0.95 V. The peak heights for these guanine nucleotides were linear at concentrations between 0.5 pmol and 1 nmol. The regional distribution of these guanine nucleotides in the rat brain was studied by this new assay method.  相似文献   

11.
High-performance liquid chromatography with electrochemical detection is utilized for the simultaneous determination of serotonin, its precursor 5-hydroxytryptophan, and its major metabolite 5-hydroxyindoleacetic acid in nervous tissue samples. Tissue preparation required only homogenization in acidic solution and centrifugation prior to application to the chromatograph. Detection limits in the low picogram range were obtained for those indoles separated. This assay was used in combination with a micropunch dissection technique of 20 discrete rat brain nuclei to measure serotonin, its precursor, and major metabolite. The specificity of the assay was checked with pharmacological experiments aimed to increase or decrease serotonin levels. Pargyline, a monoamine oxidase inhibitor, led to a marked increase in serotonin and a decrease of 5-hydroxyindoleacetic acid while p-chlorophenylalanine, by blocking the conversion of tryptophan to 5-hydroxytryptophan, selectively depleted 5-hydroxytryptophan, serotonin, and 5-hydroxyindoleacetic acid.  相似文献   

12.
A J Dunn 《Life sciences》1988,42(19):1847-1853
Brain concentrations of tryptophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and plasma amino acids were measured after 15 or 30 minutes of intermittent footshock. Footshock treatment significantly decreased the content of 5-HT in prefrontal cortex and hypothalamus, but not brainstem at 15 min, but the decreases were reversed by 30 min. 5-HIAA, the major catabolite of 5-HT, increased in prefrontal cortex after 15 min, and in prefrontal cortex and hypothalamus after 30 min footshock. 5-HIAA:5-HT ratios were increased at both timepoints in all three brain regions. Concomitant changes in the ratios of 3,4-dihydroxyphenylacetic acid (DOPAC) to dopamine and 3-methoxy,-4-hydroxyphenylethyleneglycol (MHPG) to norepinephrine were also observed. Brain concentrations of tryptophan increased progressively during the footshock in all three brain regions. Plasma concentrations of both tryptophan and tyrosine were also significantly increased, while those of histidine and lysine were decreased. It is possible that the stress-related changes in 5-HT metabolism are due to increased plasma tryptophan, in turn causing increased brain tryptophan and 5-HT synthesis. However, the transient decreases in 5-HT suggest a footshock-induced increase of 5-HT release, depleting existing stores of 5-HT, that are replenished by the increased systemic availability of tryptophan.  相似文献   

13.
An HPLC method with electrochemical detection for the simultaneous measurement of serotonin (5-hydroxytryptamine) and 5-hydroxyindoleacetic acid in primary mesencephalic cell culture is described. The serotonin and 5-hydroxyindoleacetic acid cell content was measured on different days of growth in vitro; after twelve days in culture the amounts of serotonin and 5-hydroxyindoleacetic acid detected were 916.0 ± 70.2 and 215.8 ± 15.5 pg per well, respectively. The heterogeneity of neurons in our cultures and their capacity to take up serotonin were assessed by measuring the amounts of exogenous serotonin taken up in the presence of different monoamine uptake inhibitors. This method, sensitive and reliable, can represent a valid alternative to the use of labelled compounds.  相似文献   

14.
The biomedically and neurochemically important compounds 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) have been simultaneously determined in human urine after reverse-phase two-dimensional high-performance liquid chromatography. A 10-fold-diluted urine sample (20 microliters) is first separated on a C18 column (30 X 0.39 cm) using an 85% pH 6.0 phosphate buffer/15% methanol solvent system. The elution volume containing both 5-HIAA and HVA (Rt approximately 3 min) is collected. Recoveries (mean +/- SD) for this purification step, which is monitored using fluorometric detection, were usually above 90%. After acidification of the approximately 2 ml collected fraction, 100 microliters is reinjected on a C18 column and separated (Rt: 5-HIAA, 4 min; HVA 5.5 min) using an 80% pH 3.5 phosphate buffer/20% methanol mobile phase. The compounds are determined by flow-through amperometry with absolute detection limits of approximately 25 pg. Both 5-HIAA and HVA are well resolved from other electroactive species present and are easily determined at normal and greatly reduced concentrations in human urine.  相似文献   

15.
16.
A sensitive assay was developed for the quantitation of 5-fluorouracil (5-FU) and uracil using liquid–liquid extraction (LLE) and HPLC with UV detection. Analyses were performed with four μBondapak C18 columns connected in series using 20 mM acetic acid with 1% ACN as mobile phase. The calibration curves were linear across the range of 26–1000 ng ml−1 (0.21–7.8 μM) for 5-FU and 1.0–14.0 μg ml−1 (0.01–110 μM) for uracil. This assay has been implemented to determine the plasma concentrations for pharmacokinetic studies for 5-FU and uracil in conjunction with clinical trials.  相似文献   

17.
Simultaneous determination method of N-acetyl-l-aspartyl-l-glutamate (NAAG), an endogenous agonist at type 3 metabotropic glutamate receptor, and its degradation product, N-acetyl-l-aspartate (NAA) was developed by using reversed-phase high-performance liquid chromatography (HPLC) with pre-column fluorescence derivatization using 4-N,N-dimethylaminosulfonyl-7-N-(2-aminoethyl)amino-2,1,3-benzoxadiazole. The detection limits of NAAG and NAA were approximately 12 and 34 fmol on the column, respectively (signal to noise ratio 3). The proposed HPLC method was applied to determine NAAG and NAA simultaneously in the rat brain homogenate. Both concentrations of NAAG and NAA in the male rat cerebrum (13 weeks old) were 5.7+/-0.30 and 2.1 x 10(2)+/-9.2 nmol/mg protein, respectively (n=6), while those in the hippocampus were 6.8+/-0.48 and 1.9 x 10(2)+/-8.5 nmol/mg protein, respectively (n=5). Hippocampal NAA concentration was significantly increased in the ketamine-treated rats as compared to the control rats (p<0.01).  相似文献   

18.
19.
A simple method was developed for determination of tryptophan in proteins. Hydrolysis is achieved under reducing conditions, in 6 N hydrochloric acid containing 0.4% beta-mercaptoethanol, at 110 degrees C for 24 h. The phenylthiocarbamyl derivatives of the amino acids are separated by reversed-phase high-performance liquid chromatography, without any by-product interference. The recovery of tryptophan is complete. However, the method does not allow the determination of tryptophan in carbohydrate-rich biological samples.  相似文献   

20.
A high-performance liquid chromatographic (HPLC) method is described for the simultaneous determination of acetylsalicylic acid (ASA) and its main metabolite salicylic acid (SA) in human plasma. Acidified plasma is deproteinized with acetonitrile which is separated from the aqueous layer by adding sodium chloride. ASA and SA are extracted into the acetonitrile layer with high yield, and determined by reversed-phase HPLC (column: Novapak C18 4 μm silica,150×4mm I.D.; eluent: 740 ml water, 900 μl 85% orthophosphoric acid, 180 ml acetonitrile) and photometric detection (237 nm). 2-Methylbenzoic acid is used as internal standard. The method allows the determination of ASA and SA in human plasma as low as 100 ng/ml with good precision (better than 10%). The assay was used to determine the pharmacokinetic parameters of ASA and SA following oral administration of 100–500 mg ASA in healthy volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号