首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A semiparametric changepoint model   总被引:1,自引:0,他引:1  
Guan  Zhong 《Biometrika》2004,91(4):849-862
  相似文献   

2.
3.
On empirical likelihood for a semiparametric mixture model   总被引:5,自引:0,他引:5  
Zou  F.; Fine  J. P.; Yandell  B. S. 《Biometrika》2002,89(1):61-75
  相似文献   

4.
Estimation efficiency in a binary mixed-effects model setting   总被引:3,自引:0,他引:3  
  相似文献   

5.
6.
Brown ER  Ibrahim JG 《Biometrics》2003,59(2):221-228
This article proposes a new semiparametric Bayesian hierarchical model for the joint modeling of longitudinal and survival data. We relax the distributional assumptions for the longitudinal model using Dirichlet process priors on the parameters defining the longitudinal model. The resulting posterior distribution of the longitudinal parameters is free of parametric constraints, resulting in more robust estimates. This type of approach is becoming increasingly essential in many applications, such as HIV and cancer vaccine trials, where patients' responses are highly diverse and may not be easily modeled with known distributions. An example will be presented from a clinical trial of a cancer vaccine where the survival outcome is time to recurrence of a tumor. Immunologic measures believed to be predictive of tumor recurrence were taken repeatedly during follow-up. We will present an analysis of this data using our new semiparametric Bayesian hierarchical joint modeling methodology to determine the association of these longitudinal immunologic measures with time to tumor recurrence.  相似文献   

7.
Wang X  Zhou H 《Biometrics》2006,62(4):1149-1160
We consider a semiparametric inference procedure for data from epidemiologic studies conducted with a two-component sampling scheme where both a simple random sample and multiple outcome- or outcome-/auxiliary-dependent samples are observed. This sampling scheme allows the investigators to oversample certain subpopulations believed to have more information about the regression model while still gaining insights about the underlying population through the simple random sample. We focus on settings where there is no additional information about the parent cohort and the sampling probability is nonidentifiable. We motivate our problem with an ongoing study to assess the association between the mutation level of epidermal growth factor receptor (EGFR) and the antitumor response to EGFR-targeted therapy among nonsmall cell lung cancer patients. The proposed method applies to both binary and multicategorical outcome data and allows an arbitrary link function in the framework of generalized linear models. Simulation studies show that the proposed estimator has nice small sample properties. The proposed method is illustrated with a data example.  相似文献   

8.
9.
Tan  Z. 《Biometrika》2009,96(1):229-236
Suppose that independent observations are drawn from multipledistributions, each of which is a mixture of two component distributionssuch that their log density ratio satisfies a linear model witha slope parameter and an intercept parameter. Inference forsuch models has been studied using empirical likelihood, andmixed results have been obtained. The profile empirical likelihoodof the slope and intercept has an irregularity at the null hypothesisso that the two component distributions are equal. We derivea profile empirical likelihood and maximum likelihood estimatorof the slope alone, and obtain the usual asymptotic propertiesfor the estimator and the likelihood ratio statistic regardlessof the null. Furthermore, we show the maximum likelihood estimatorof the slope and intercept jointly is consistent and asymptoticallynormal regardless of the null. At the null, the joint maximumlikelihood estimator falls along a straight line through theorigin with perfect correlation asymptotically to the firstorder.  相似文献   

10.
Hjort & Claeskens (2003) developed an asymptotic theoryfor model selection, model averaging and subsequent inferenceusing likelihood methods in parametric models, along with associatedconfidence statements. In this article, we consider a semiparametricversion of this problem, wherein the likelihood depends on parametersand an unknown function, and model selection/averaging is tobe applied to the parametric parts of the model. We show thatall the results of Hjort & Claeskens hold in the semiparametriccontext, if the Fisher information matrix for parametric modelsis replaced by the semiparametric information bound for semiparametricmodels, and if maximum likelihood estimators for parametricmodels are replaced by semiparametric efficient profile estimators.Our methods of proof employ Le Cam's contiguity lemmas, leadingto transparent results. The results also describe the behaviourof semiparametric model estimators when the parametric componentis misspecified, and also have implications for pointwise-consistentmodel selectors.  相似文献   

11.
In follow‐up studies, the disease event time can be subject to left truncation and right censoring. Furthermore, medical advancements have made it possible for patients to be cured of certain types of diseases. In this article, we consider a semiparametric mixture cure model for the regression analysis of left‐truncated and right‐censored data. The model combines a logistic regression for the probability of event occurrence with the class of transformation models for the time of occurrence. We investigate two techniques for estimating model parameters. The first approach is based on martingale estimating equations (EEs). The second approach is based on the conditional likelihood function given truncation variables. The asymptotic properties of both proposed estimators are established. Simulation studies indicate that the conditional maximum‐likelihood estimator (cMLE) performs well while the estimator based on EEs is very unstable even though it is shown to be consistent. This is a special and intriguing phenomenon for the EE approach under cure model. We provide insights into this issue and find that the EE approach can be improved significantly by assigning appropriate weights to the censored observations in the EEs. This finding is useful in overcoming the instability of the EE approach in some more complicated situations, where the likelihood approach is not feasible. We illustrate the proposed estimation procedures by analyzing the age at onset of the occiput‐wall distance event for patients with ankylosing spondylitis.  相似文献   

12.
13.
This paper presents new methods, using a Bayesian approach, for analyzing longitudinal count data with excess zeros and nonlinear effects of continuously valued covariates. In longitudinal count data there are many problems that can make the use of a zero-inflated Poisson (ZIP) model ineffective. These problems are unobserved heterogeneity and nonlinear effects of continuously valued covariates. Our proposed semiparametric model can simultaneously handle these problems in a unified framework. The framework accounts for heterogeneity by incorporating random effects and has two components. The parametric component of the model which deals with the linear effects of time invariant covariates and the non-parametric component which gives an arbitrary smooth function to model the effect of time or time-varying covariates on the logarithm of mean count. The proposed methods are illustrated by analyzing longitudinal count data on the assessment of an efficacy of pesticides in controlling the reproduction of whitefly.  相似文献   

14.
An estimation method for the semiparametric mixed effects model   总被引:6,自引:0,他引:6  
Tao H  Palta M  Yandell BS  Newton MA 《Biometrics》1999,55(1):102-110
A semiparametric mixed effects regression model is proposed for the analysis of clustered or longitudinal data with continuous, ordinal, or binary outcome. The common assumption of Gaussian random effects is relaxed by using a predictive recursion method (Newton and Zhang, 1999) to provide a nonparametric smooth density estimate. A new strategy is introduced to accelerate the algorithm. Parameter estimates are obtained by maximizing the marginal profile likelihood by Powell's conjugate direction search method. Monte Carlo results are presented to show that the method can improve the mean squared error of the fixed effects estimators when the random effects distribution is not Gaussian. The usefulness of visualizing the random effects density itself is illustrated in the analysis of data from the Wisconsin Sleep Survey. The proposed estimation procedure is computationally feasible for quite large data sets.  相似文献   

15.
Yun Chen H 《Biometrics》2007,63(2):413-421
We propose a semiparametric odds ratio model to measure the association between two variables taking discrete values, continuous values, or a mixture of both. Methods for estimation and inference with varying degrees of robustness to model assumptions are studied. Semiparametric efficient estimation and inference procedures are also considered. The estimation methods are compared in a simulation study and applied to the study of associations among genital tract bacterial counts in HIV infected women.  相似文献   

16.
17.
We present a Bayesian approach to analyze matched "case-control" data with multiple disease states. The probability of disease development is described by a multinomial logistic regression model. The exposure distribution depends on the disease state and could vary across strata. In such a model, the number of stratum effect parameters grows in direct proportion to the sample size leading to inconsistent MLEs for the parameters of interest even when one uses a retrospective conditional likelihood. We adopt a semiparametric Bayesian framework instead, assuming a Dirichlet process prior with a mixing normal distribution on the distribution of the stratum effects. We also account for possible missingness in the exposure variable in our model. The actual estimation is carried out through a Markov chain Monte Carlo numerical integration scheme. The proposed methodology is illustrated through simulation and an example of a matched study on low birth weight of newborns (Hosmer, D. A. and Lemeshow, S., 2000, Applied Logistic Regression) with two possible disease groups matched with a control group.  相似文献   

18.
Summary .   Motivated by the spatial modeling of aberrant crypt foci (ACF) in colon carcinogenesis, we consider binary data with probabilities modeled as the sum of a nonparametric mean plus a latent Gaussian spatial process that accounts for short-range dependencies. The mean is modeled in a general way using regression splines. The mean function can be viewed as a fixed effect and is estimated with a penalty for regularization. With the latent process viewed as another random effect, the model becomes a generalized linear mixed model. In our motivating data set and other applications, the sample size is too large to easily accommodate maximum likelihood or restricted maximum likelihood estimation (REML), so pairwise likelihood, a special case of composite likelihood, is used instead. We develop an asymptotic theory for models that are sufficiently general to be used in a wide variety of applications, including, but not limited to, the problem that motivated this work. The splines have penalty parameters that must converge to zero asymptotically: we derive theory for this along with a data-driven method for selecting the penalty parameter, a method that is shown in simulations to improve greatly upon standard devices, such as likelihood crossvalidation. Finally, we apply the methods to the data from our experiment ACF. We discover an unexpected location for peak formation of ACF.  相似文献   

19.
20.
A semiparametric regression cure model with current status data   总被引:1,自引:0,他引:1  
Lam  K. F.; Xue  Hongqi 《Biometrika》2005,92(3):573-586
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号