首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of isonicotinic acid and isoniazid bySarcina sp. led to the formation of two metabolites which were characterised as 2-hydroxyisonicotinic acid and citrazinic acid. The blue pigment formed during fermentation was shown to be derived from the auto-oxidation of citrazinic acid. 2-Oxo-glutarate accumulated as the major keto acid when isonicotinic acid or isonicotinic acid hydrazide metabolism was inhibited by 1 mM sodium arsenite. Isonicotinic acid, 2-hydroxy-isonicotinic acid and 2-oxo-glutarate were oxidised by isonicotinic acid hydrazide or isonicotinic acid-grown cells; citrazinic acid was, however, not oxidised. Isoniazid hydrazine hydrolase, isonicotinic acid and 2-hydroxyisonicotinic acid hydroxylases were detected in the cell-free extract ofSarcina sp. grown on isonicotinic acid hydrazide or isonicotinic acid. Communication no. 2427from Central Drug Research Institute, Lucknow.  相似文献   

2.
The mutagenic activity of isoniazid, N-acetyl-isoniazid and hydrazine dihydrochloride was investigated in S. typhimurium. Isoniazid was found to possess a weak mutagenic activity only in repair-deficient strains TA1535 and TA100 as well as in the plasmid-containing strain TA92 (10-30 mg/plate) in the Ames test without metabolic activation. Addition of microsomal enzymes by S9 mix decreased this direct mutagenic activity. In contrast, preincubation of isoniazid with crude liver homogenate from mice, rats or Syrian golden hamsters for 4 h prior to plating with bacteria liberated a mutagenic compound which is equally active in both repair-deficient and repair wild-type strains (0.5-5 mg/plate). This activation pathway is independent of NADPH, is heat-sensitive and is operative only in a total liver homogenate in suspension. The highest capacity for mutagenic activation was achieved with liver homogenate from hamsters, followed by that from mice and rats. Furthermore, this mutagenic activation is paralleled by formation of hydrazine, as demonstrated in colorimetric measurements with p-dimethylaminobenzaldehyde. N-Acetyl-isoniazid is without mutagenic activity under similar conditions, and liberation of hydrazine was never detected. This means that, besides having a weak direct genetic activity, isoniazid is a promutagen, and formation of hydrazine is the first step in metabolic activation. It is concluded that the genotoxic properties of isoniazid in mammals are primarily determined by the pharmacokinetic behavior of the ultimate reactive metabolite. This result must be taken into consideration in risk assessment performed for mutagenic and carcinogenic properties of isoniazid in man.  相似文献   

3.
The reaction of ethyl isonicotinate (ethyl 4-pyridine carboxylate) with hydrazine hydrate as a nucleophile was conducted in 1,4-dioxane as a solvent to produce 4-pyridine carboxylic acid hydrazide (isoniazid) with different immobilized lipases. Isoniazid is an important agent in the treatment of tuberculosis and it can be synthesized via Novozym 435 as the catalyst. Equimolar quantities of reactants (3.33 × 10−4 mol/cm3 each) in 30 mL solution with 1.67 × 10−3 g/cm3 Novozym 435 leads to 52% conversion in 24 h. Based on the initial rate studies and concentration profiles (progress curve) analysis, a complete rate equation is proposed taking into account the irreversible inactivation caused by ethyl isonicotinate at very high concentrations. The kinetic model follows the ternary complex mechanism with dead end inhibition by ethyl isonicotinate.  相似文献   

4.
To gain novel insight into the molecular mechanisms underlying hydrazine-induced hepatotoxicity, mRNAs, proteins and endogenous metabolites were identified that were altered in rats treated with hydrazine compared with untreated controls. These changes were resolved in a combined genomics, proteomics and metabonomics study. Sprague–Dawley rats were assigned to three treatment groups with 10 animals per group and given a single oral dose of vehicle, 30 or 90 mg?kg?1 hydrazine, respectively. RNA was extracted from rat liver 48 h post-dosing and transcribed into cDNA. The abundance of mRNA was investigated on cDNA microarrays containing 699 rat-specific genes involved in toxic responses. In addition, proteins from rat liver samples (48 and 120/168 h post-dosing) were resolved by two-dimensional differential gel electrophoresis and proteins with changed expression levels after hydrazine treatment were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide mass fingerprinting. To elucidate how regulation was reflected in biochemical pathways, endogenous metabolites were measured in serum samples collected 48 h post-dosing by 600-MHz 1H-NMR. In summary, a single dose of hydrazine caused gene, protein and metabolite changes, which can be related to glucose metabolism, lipid metabolism and oxidative stress. These findings support known effects of hydrazine toxicity and provide potential new biomarkers of hydrazine-induced toxicity.  相似文献   

5.
A gas chromatographic—mass spectrometric assay for isoniazid and its hydrazino metabolites in human plasma was developed. The trimethylsilyl derivatives of diacetylhydrazine and acetylisoniazid and of the benzaldehyde hydrazones of acetylhydrazine and isoniazid were separated on a 1% OV-17 column and quantitated by single ion monitoring using a LKB 9000 mass spectrometer. Deuterated analogues served as internal standards. The method is well suited for the determination of the hepatotoxic hydrazino metabolites of isoniazid in human plasma following an oral therapeutic dose of isoniazid.  相似文献   

6.
G. Speit  C. Wick  M. Wolf 《Human genetics》1980,54(2):155-158
Summary Experiments were performed in order to gain information about the primary process leading to the production of sister chromatid exchanges (SCEs). Radical-forming substances (hydroxylamine, hydrazine and the antituberculous drug isoniazid) were examined for their effectiveness in inducing SCEs. All three substances proved successful in the induction of SCEs in the V-79 cell line of the Chinese hamster. By simultaneous application of a sulfhydryl compound (cysteine), a reduction of the hydrazine-and isoniazid-induced SCEs was achieved. Isoniazid was additionally examined in the in vivo SCE-test. At concentrations of 2–100 mg/kg body weight, it does not increase the rate of SCEs in the bone marrow of the Chinese hamster.  相似文献   

7.
A comprehensive assay for determination of pyrazinamide (PZA), rifampicin (RIF), isoniazid (INH) and hydrazine metabolites is described. The method involves organic solvent extraction of PZA and RIF, followed by derivatization of INH, monoacetylhydrazine (mHYD) and hydrazine (HYD) with salicylaldehyde and extraction with diethyl ether. Acetylisoniazid (acINH) and diacetylhydrazine (dHYD) were hydrolyzed to INH and mHYD, respectively, and processed as above. Using a gradient solvent programmer, PZA and RIF were analyzed on a C8 (5 μm) column at 248 nm, while INH and metabolites were analyzed on a C18 (5 μm) ODS2 column at 280 nm.  相似文献   

8.
1. Evidence is presented for the presence of pyridoxine phosphate oxidase in aqueous extracts of Escherichia coli. Some comparison is made with pyridoxamine phosphate oxidase. 2. Isoniazid and iproniazid were found to combine with pyridoxal phosphate, but isoniazid did not combine with either pyridoxamine phosphate or pyridoxine phosphate. Both oxidase activities were somewhat inhibited by benzylamine and putrescine, but not by phenethylamine or cadaverine. 3. The significance of pyridoxine phosphate oxidase in cell metabolism is discussed.  相似文献   

9.
The basic principle of derivatization of a hydrazide moiety with an aldehyde as applied in the method developed by Lacroix et al. [J. Chromatogr., 307 (1984) 137–144] for the quantitation of isoniazid and acetylisoniazid was imppoved by modification, standardization and extension to allow quantitation of hydrazine in patient samples. It could be shown that 40 μl of 1% methanonic cinnamaldehyde per 200 μl of deproteinized analysate gave maximal chromophoric isoniazid-cinnamaldehyde conjugate, read at 340 nm. The hydrolytic loss of isoniazid, crucial to the quantitation of acetylisoniazid, could be compensated for by introduction of an appropriate set of calibration curves. Although the method described here allows quantitation of monoacetylhydrazie and diacetylhydrazine, in addition to hydrazine, in mono-spiked samples, the method cannot be used for the quantitation of the acetylated metabolites of hydrazine in patient samples because of a lack of specificity. Linear calibration curves in the range 1–25 μg/ml for isoniazid and acetylisoniazid, 10–400 ng/ml for hydrazine and 50–1000 ng/ml for mono-acetylhydrazine and diacetylhydrazine, could be constructed; analyte recoveries approaching 100% could be achieved in all instances.  相似文献   

10.
K Ito  K Yamamoto  S Kawanishi 《Biochemistry》1992,31(46):11606-11613
The mechanism by which hydrazines induce damage to cellular and isolated DNA in the presence of metal ions has been investigated by pulsed-field gel electrophoresis (PFGE), DNA sequencing methods, and the ESR spin-trapping technique. For the detection of single-strand breaks by PFGE, an experimental procedure with alkali treatment has been designed. Isoniazid, hydrazine, and phenylhydrazine induced DNA single- and double-strand breaks in cells pretreated with Mn(II), whereas iproniazid did not. With isolated 32P-DNA, isoniazid produced DNA damage in the presence of Cu(II), Mn(II), or Mn(III). Iproniazid damage isolated DNA only in the presence of Cu(II). The Cu(II)-mediated DNA damage by isoniazid or iproniazid is due to active oxygen species other than hydroxyl free radical (.OH), presumably the Cu(I)-peroxide complex. Cleavage of isolated DNA by isoniazid plus Mn(II) occurred without marked site specificity. The DNA damage was inhibited by .OH scavengers and superoxide dismutase (SOD) but not by catalase, suggesting the involvement of .OH formed via O2- but not via H2O2. Consistently, in ESR experiments .OH formation was observed during Mn(II)-catalyzed autoxidation of isoniazid, and the .OH formation was inhibited by SOD, but not by catalase. Iproniazid plus Mn(II) produced no or little .OH. We propose a reaction mechanism for the .OH formation without a H2O2 intermediate during manganese-catalyzed autoxidation of hydrazine. The present and previous data raise the possibility that hydrazines plus Mn(II)-induced cellular DNA damage may occur, at least in part, through the non-Fenton-type reaction.  相似文献   

11.
BackgroundIsoniazid and rifampicin are the two most efficacious first-line agents for tuberculosis (TB) treatment. We assessed the prevalence of isoniazid and rifampicin mono-resistance, associated risk factors, and the association of mono-resistance on treatment outcomes.MethodsA prospective, observational cohort study enrolled adults with a first episode of smear-positive pulmonary TB from 34 health facilities in a northern district of Lima, Peru, from March 2010 through December 2011. Participants were interviewed and a sputum sample was cultured on Löwenstein-Jensen (LJ) media. Drug susceptibility testing was performed using the proportion method. Medication regimens were documented for each patient. Our primary outcomes were treatment outcome at the end of treatment. The secondary outcome included recurrent episodes among cured patients within two years after completion of the treatment.ResultsOf 1292 patients enrolled, 1039 (80%) were culture-positive. From this subpopulation, isoniazid mono-resistance was present in 85 (8%) patients and rifampicin mono-resistance was present in 24 (2%) patients. In the multivariate logistic regression model, isoniazid mono-resistance was associated with illicit drug use (adjusted odds ratio (aOR) = 2.10; 95% confidence interval (CI): 1.1–4.1), and rifampicin mono-resistance was associated with HIV infection (aOR = 9.43; 95%CI: 1.9–47.8). Isoniazid mono-resistant patients had a higher risk of poor treatment outcomes including treatment failure (2/85, 2%, p-value<0.01) and death (4/85, 5%, p<0.02). Rifampicin mono-resistant patients had a higher risk of death (2/24, 8%, p<0.01).ConclusionA high prevalence of isoniazid and rifampicin mono-resistance was found among TB patients in our low HIV burden setting which were similar to regions with high HIV burden. Patients with isoniazid and rifampicin mono-resistance had an increased risk of poor treatment outcomes.  相似文献   

12.
Enzymatic activation of hydrazine derivatives. A spin-trapping study   总被引:2,自引:0,他引:2  
The oxidative metabolism of hydralazine, isoniazid, iproniazid, and phenylhydrazine has been studied using spin-trapping techniques. The oxidation of these hydrazine derivatives, catalyzed by horseradish peroxidase and prostaglandin synthetase, produces reactive free radical intermediates. Enzymatic activation of hydralazine produce the nitrogen-centered hydralazyl radical (RNHNH); phenylhydrazine formed only the phenyl radical. Iproniazid, on the other hand, formed both the isopropyl radical and a hydroperoxy radical. The formation of the hydroperoxy radical was not inhibited by superoxide dismutase. The horseradish peroxidase-catalyzed oxidation of isoniazid produced two different carbon-centered radicals. The identity of these radicals is not clear; however, they may arise from an acyl (RCO) radical and an alkyl (R) radical.  相似文献   

13.
Isoniazid inactivation was studied in a sample of 100 subjects from Central Thailand. The frequency of the allele AcS (resulting in slow inactivation in the homozygous state) was calculated as 0.755. There is evidence for a simply additive dosage effect of the two genes AcR and AcS. The results are discussed with regard to other population studies and to recent findings concerning isoniazid inactivation and the activity of the involved enzymes in nonhuman primates.  相似文献   

14.
A method for the determination of isonicotinic acid hydrazide (isoniazid) in milk was developed. Milk was deproteinized with trichloroacetic acid. Isoniazid was condensed with cinnamaldehyde and assayed on a reversed-phase HPLC system, with good sensitivity and accuracy (10 μg/l) with UV detection at 330 nm. Use of solid-phase extraction with a C18 cartridge allows the detection limit to be lowered to 0.1 μg/l with UV detection and confirmation of isoniazid hydrazone from the diode-array UV spectrum.  相似文献   

15.
We report earlier that isoniazid and foot-shock stress individually increase the maximal number of [35S]TBPS binding sites (Bmax) measured ex vivo in unwashed membranes from rat cerebral cortex and that the increase due to both treatments are prevented by pretreatment in vivo with diazepam which alone induced a significant decrease in the total number of [35S]TBPS binding sites. In the present paper, the effect of stress was studied on both the increase in [35S]TBPS binding and the convulsant activity induced by isoniazid in unstressed rats. Isoniazid induced a time dependent increase in [35S]TBPS binding. The isoniazid-induced increase in [35S]TBPS binding was markedly potentiated by foot-shock stress. Moreover, foot-shock stress markedly reduced the latency to the appearance of generalized seizures induced by isoniazid (300 mg/kg s.c.). The results provide evidence that the in vivo inhibition of GABAergic transmission elicited by isoniazid results in an increase of [35S]TBPS binding in the rats cerebral cortex. The finding that stress, like isoniazid, enhances [35S]TBPS binding suggests that this treatment also inhibits the function of GABAergic synapses.  相似文献   

16.
Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug-resistant strains of TB. Arylamine N-acetyltransferase (NAT) is a drug-metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N-acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti-tubercular therapy.  相似文献   

17.
Isoniazid represents a first-line anti-tuberculosis medication in prevention and treatment. This prodrug is activated by a mycobacterial catalase-peroxidase enzyme called KatG in Mycobacterium tuberculosis), thereby inhibiting the synthesis of mycolic acid, required for the mycobacterial cell wall. Moreover, isoniazid activation by KatG produces some radical species (e.g., nitrogen monoxide), that display anti-mycobacterial activity. Remarkably, the ability of mycobacteria to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in these bacteria of (pseudo-)enzymatic detoxification systems, including truncated hemoglobins (trHbs). Here, we report that isoniazid binds reversibly to ferric and ferrous M. tuberculosis trHb type N (or group I; Mt-trHbN(III) and Mt-trHbN(II), respectively) with a simple bimolecular process, which perturbs the heme-based spectroscopic properties. Values of thermodynamic and kinetic parameters for isoniazid binding to Mt-trHbN(III) and Mt-trHbN(II) are K = (1.1±0.1)×10−4 M, k on = (5.3±0.6)×103 M−1 s−1 and k off = (4.6±0.5)×10−1 s−1; and D = (1.2±0.2)×10−3 M, d on = (1.3±0.4)×103 M−1 s−1, and d off = 1.5±0.4 s−1, respectively, at pH 7.0 and 20.0°C. Accordingly, isoniazid inhibits competitively azide binding to Mt-trHbN(III) and Mt-trHbN(III)-catalyzed peroxynitrite isomerization. Moreover, isoniazid inhibits Mt-trHbN(II) oxygenation and carbonylation. Although the structure of the Mt-trHbN-isoniazid complex is not available, here we show by docking simulation that isoniazid binding to the heme-Fe atom indeed may take place. These data suggest a direct role of isoniazid to impair fundamental functions of mycobacteria, e.g. scavenging of reactive nitrogen and oxygen species, and metabolism.  相似文献   

18.
Isoniazid (INH, isonicotinic acid hydrazine) is one of only two therapeutic agents effective in treating tuberculosis. This prodrug is activated by the heme enzyme catalase peroxidase (KatG) endogenous to Mycobacterium tuberculosis but the mechanism of activation is poorly understood, in part because the binding interaction has not been properly established. The class I peroxidases ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP) have active site structures very similar to KatG and are also capable of activating isoniazid. We report here the first crystal structures of complexes of isoniazid bound to APX and CcP. These are the first structures of isoniazid bound to any activating enzymes. The structures show that isoniazid binds close to the delta-heme edge in both APX and CcP, although the precise binding orientation varies slightly in the two cases. A second binding site for INH is found in APX at the gamma-heme edge close to the established ascorbate binding site, indicating that the gamma-heme edge can also support the binding of aromatic substrates. We also show that in an active site mutant of soybean APX (W41A) INH can bind directly to the heme iron to become an inhibitor and in a different mode when the distal histidine is replaced by alanine (H42A). These structures provide the first unambiguous evidence for the location of the isoniazid binding site in the class I peroxidases and provide rationalization of isoniazid resistance in naturally occurring KatG mutant strains of M. tuberculosis.  相似文献   

19.
The effect of 10-2M. isonicotinyl hydrazide (isoniazid) on theincorporation of radioactive carbon dioxide by Chlorella duringphotosynthesis has been studied under steady-state conditionsat two carbon dioxide concentrations. Isoniazid treatment resultsin increased radioactivity in sucrose, glycollic acid, and glycineand decreased radioactivity in sugar monophosphates, serine,and alanine. An unidentified compound which is strongly radioactiveafter short-term exposures to 14CO2 is present in isoniazid-treatedcells. It is suggested that isoniazid pre-dominantly inhibitsthe conversion of glycine to serine.  相似文献   

20.
A biocatalytic route for the synthesis of isoniazid, an important first-line antitubercular drug, in aqueous system is presented. The reported bioprocess is a greener method, does not involve any hazardous reagent and takes place under mild reaction conditions. Whole cell amidase of Bacillus smithii strain IITR6b2 having acyltransferase activity was utilized for its ability to transfer acyl group of isonicotinamide to hydrazine–2HCl in aqueous medium. B. smithii strain IITR6b2 possessed 3 folds higher acyltransferase activity as compared to amide hydrolase activity and this ratio was further improved to 4.5 by optimizing concentration of co-substrate hydrazine–2HCl. Various key parameters were optimized and under the optimum reaction conditions of pH (7, phosphate buffer 100 mM), temperature (30 °C), substrate/co-substrate concentration (100/1000 mM) and resting cells concentration (2.0 mgdcw/ml), 90.4% conversion of isonicotinamide to isoniazid was achieved in 60 min. Under these conditions, a fed batch process for production of isoniazid was developed and resulted in the accumulation of 439 mM of isoniazid with 87.8% molar conversion yield and productivity of 6.0 g/h/gdcw. These results demonstrated that enzymatic synthesis of isoniazid using whole cells of B. smithii strain IITR6b2 might present an efficient alternative route to the chemical synthesis procedures without the involvement of organic solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号