首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retrovirus strain MC29 induces a variety of tumors in chickens, including myelocytomatosis and carcinomas of the kidney and liver. In addition, the virus can transform cultures of embryonic avian macrophages and fibroblasts. We have characterized the genome of MC29 virus and have identified nucleotide sequences that may encode the oncogenic potential ofthe virus. MC29 virus can replicate only with the assistance of a related helper virus. The defect in replication is apparently a consequence of a deletion in one or more viral genes: the haploid genome of the MC29 virus has a molecular weight of ca. 1.7 X 10(6), whereas the genome of the helper virus MCAV has a molecular weight of ca. 3.1 X 10(6). Although MC29 virus transforms fibroblasts in culture, its genome has no detectable homology with the gene src that is responsible for transformation of fibroblasts by avian sarcoma viruses. We prepared radioactive single-stranded DNA complementary to nucleotide sequences present in the genome of MC29 virus but not in the genome of MCAV (cDNA(MC29)). If they are contiguous, these sequences (ca. 1,500 nucleotides) are sufficiently complex to encode at least one protein. Homologous sequences were not detectable in several strains of avian sarcoma viruses or in an endogenous virus of chickens. Our findings confirm and extend recent reports from other laboratories and lead to the conclusion that MC29 virus may contain a previously unidentified gene(s) that is capable of transforming several distinct target cells. The evolutionary origins of this putative gene and its location on the viral genome can be explored with cDNA(MC29).  相似文献   

2.
In Vitro and In Vivo Observations on a Murine C-Type Virus   总被引:3,自引:2,他引:1       下载免费PDF全文
From 40 discrete mouse tissue culture cell lines examined by electron microscopy or complement fixation, or both, for the presence of detectable virus, one (NCTC 4705), initiated and maintained on chemically defined medium, was chosen for a more extensive study. Virus-like particles (100 to 110 mμ), morphologically similar to previously reported immature and mature C-type leukemia virus particles, were found budding from the plasma membrane and free in the intracellular spaces of cells in tissue culture and in fibrosarcomas resulting from intramuscular implants of these tissue cultures. Complement-fixation tests for group reactive murine leukemia antigens were positive, with titers consistently higher to a broadly reactive anti-serum than to anti-Friend, anti-Moloney, or anti-Rauscher sera. The 4705 virus was neutralized by Gross antiserum, but not by the F-M-R antisera. When injected into DD, BALB/c, or C3H/He newborn mice, the virus thus far has manifested no leukemogenicity, though virus from tumor extracts and tissue culture medium has been shown to be capable of infecting C3H and Swiss mouse embryo tissue cultures and successfully replicating in them. The role of the virus in accelerating or inducing neoplastic transformation in NCTC 4705 is still not known. When it was introduced into NCTC [ill], a non-neoplastic cell line in other respects similar to NCTC 4705, 4823 manifested no signs of neoplastic transformation after harboring the virus more than 300 days in vitro.  相似文献   

3.
The appearance of C-type virus particles in thymus cells of Swiss mouse embryos, 11.5 to 15.5 days post-conception age (PCA), was studied with the electron microscope. In thymic rudiments of all specimens examined, virus particles were seen in epithelial cytoplasm, budding from epithelial cell surfaces and in extracellular spaces. Lymphoid cells were first seen in thymic rudiments of 13.5 days PCA, and did not display virus particles at this stage. At 14.5 days PCA, thymic lymphocytes had localized plasmalemmal thickenings of high electron-density which were adjacent to extracellular virus particles. Viruses appeared to be penetrating thymic lymphocytes by viropexis in embryos of 15.5 days PCA. At this stage, many lymphocytes also had cytoplasmic virus-containing vesicles and viral buds at their surfaces. These observations suggest the possibility that, in embryos, C-type viruses are transmitted horizontally from thymic epithelium to early populations of thymic lymphocytes.  相似文献   

4.
Retrovirus assembly involves a complex series of events in which a large number of proteins must be targeted to a point on the plasma membrane where immature viruses bud from the cell. Gag polyproteins of most retroviruses assemble an immature capsid on the cytoplasmic side of the plasma membrane during the budding process (C-type assembly), but a few assemble immature capsids deep in the cytoplasm and are then transported to the plasma membrane (B- or D-type assembly), where they are enveloped. With both assembly phenotypes, Gag polyproteins must be transported to the site of viral budding in either a relatively unassembled form (C type) or a completely assembled form (B and D types). The molecular nature of this transport process and the host cell factors that are involved have remained obscure. During the development of a recombinant baculovirus/insect cell system for the expression of both C-type and D-type Gag polyproteins, we discovered an insect cell line (High Five) with two distinct defects that resulted in the reduced release of virus-like particles. The first of these was a pronounced defect in the transport of D-type but not C-type Gag polyproteins to the plasma membrane. High Five cells expressing wild-type Mason-Pfizer monkey virus (M-PMV) Gag precursors accumulate assembled immature capsids in large cytoplasmic aggregates similar to a transport-defective mutant (MA-A18V). In contrast, a larger fraction of the Gag molecules encoded by the M-PMV C-type morphogenesis mutant (MA-R55W) and those of human immunodeficiency virus were transported to the plasma membrane for assembly and budding of virions. When pulse-labeled Gag precursors from High Five cells were fractionated on velocity gradients, they sedimented more rapidly, indicating that they are sequestered in a higher-molecular-mass complex. Compared to Sf9 insect cells, the High Five cells also demonstrate a defect in the release of C-type virus particles. These findings support the hypothesis that host cell factors are important in the process of Gag transport and in the release of enveloped viral particles.  相似文献   

5.
C-Type Virus associated with Gibbon Lymphosarcoma   总被引:49,自引:0,他引:49  
C-TYPE viruses have been established as the causal agents of leukaemia in murine and feline species and have been characterized1,2. C-type virus is also probably associated with fibrosarcoma in non-human primates3–6. To determine whether viruses with identical characteristics are associated with other neoplasms in simian species, we looked for C-type viruses in cases of leukaemia. A gibbon (Hylobates lar) with a disseminated tumour (later confirmed as lymphosarcoma) was made available to the Comparative Oncology Laboratory by Dr Malcolm Jones of the University of California, San Francisco Medical Center. The principal sites of involvement (lymph node, liver and bone marrow) were extensively overrun with massive neoplastic cells, which were predominantly prolymphocytic forms. Electron microscopy revealed C-type particles identical to those observed in vitro in sections from lymph nodes, liver, spleen and bone marrow.  相似文献   

6.
During evaluation of a procedure for separating rat ventral prostate epithelial from connective tissue cells, isolated fractions were examined by transmission electron microscopy. Characteristic C-type RNA viruses were seen budding from or in close proximity to the plasma membranes of isolated epithelial cells. Dissociation of rat prostate cells and concentration of the epithelial fraction facilitated detection of this virus.  相似文献   

7.
8.
We have previously demonstrated that the Gag p9 protein of equine infectious anemia virus (EIAV) is functionally homologous with Rous sarcoma virus (RSV) p2b and human immunodeficiency virus type 1 (HIV-1) p6 in providing a critical late assembly function in RSV Gag-mediated budding from transfected COS-1 cells (L. J. Parent et al., J. Virol. 69:5455-5460, 1995). In light of the absence of amino acid sequence homology between EIAV p9 and the functional homologs of RSV and HIV-1, we have now designed an EIAV Gag-mediated budding assay to define the late assembly (L) domain peptide sequences contained in the EIAV p9 protein. The results of these particle budding assays revealed that expression of EIAV Gag polyprotein in COS-1 cells yielded extracellular Gag particles with a characteristic density of 1.18 g/ml, while expression of EIAV Gag polyprotein lacking p9 resulted in a severe reduction in the release of extracellular Gag particles. The defect in EIAV Gag polyprotein particle assembly could be corrected by substituting either the RSV p2b or HIV-1 p6 protein for EIAV p9. These observations demonstrated that the L domains of EIAV, HIV-1, and RSV were interchangeable in mediating assembly of EIAV Gag particles in the COS-1 cell budding assay. To localize the L domain of EIAV p9, we next assayed the effects of deletions and site-specific mutations in the p9 protein on its ability to mediate budding of EIAV Gag particles. Analyses of EIAV Gag constructs with progressive N-terminal or C-terminal deletions of the p9 protein identified a minimum sequence of 11 amino acids (Q20N21L22Y23P24D25L26S27E28I29K30) capable of providing the late assembly function. Alanine scanning studies of this L-domain sequence demonstrated that mutations of residues Y23, P24, and L26 abrogated the p9 late budding function; mutations of other residues in the p9 L domain did not substantially affect the level of EIAV Gag particle assembly. These data indicate that the L domain in EIAV p9 utilizes a YXXL motif which we hypothesize may interact with cellular proteins to facilitate virus particle budding from infected cells.  相似文献   

9.
RAT embryo cells infected with either CF-1 or Rauscher C-type RNA murine leukaemia virus, when treated with diethylnitrosamine (DENA), undergo morphological transformation and become aneuploid1. Untreated cells and cells treated with either virus or chemical alone do not transform. We describe here a similar effect of 3-methylcholanthrene (3 MC) on rat cells infected with Rauscher leukaemia virus.  相似文献   

10.
The putative transforming protein of avian myelocytomatosis virus MC29 is a 110,000 dalton (P110gag-myc) polyprotein comprised of sequences derived from both the gag region and the MC29-specific myc region. Two approaches have been taken to determine the location of the MC29 gag-related proteins in transformed cells: subcellular fractionation and immunofluorescence. Analysis of subcellular fractions of MC29-transformed cells by immunoprecipitation indicates that the majority of the gag-myc polyprotein is found in the nuclear fractions of Q8 cells (a nonproducer line of MC29-transformed quail embryo fibroblasts) and nonproducer cells derived from a liver tumor of MC20-infected quail. This is in contrast to the distribution of gag-related helper virus proteins lacking myc, which are found only in nonnuclear fractions of superinfected Q8 cells. The purity of unlabeled nuclei was assessed by electron microscopy and enzyme assays, revealing little contaminating material from other subcellular fractions. Immunofluorescence experiments using monospecific anti-gag serum showed specific, intense immunofluorescence in the nuclei of fixed Q8 cells. In contrast, the majority of P75gag-erb, a candidate transforming protein produced by avian erythroblastosis virus (AEV), is absent from the nuclei of nonproducer AEV-transformed chick embryo fibroblasts. The nuclear association of the MC29 transforming protein may be related to some of the unique properties of MC29-transformed cells.  相似文献   

11.
Highly sensitive and specific radioimmunoassays are described for quantitation of the intraspecies determinants of several mammalian C-type viral group-specific (gs) antigens. An interspecies (gs-3) immunoassay has been developed which has both the broad reactivity and great sensitivity necessary for detection of C-type viruses where intraspecies gs assays are not available. By using these immunoassays, the expression of endogenous virus-specified gs antigens in mammalian cells of different species has been studied. Whereas mouse gs antigen was clearly detectable in tissue culture cells of several mouse strains, the respective gs antigens of rat, cat, Chinese hamster, woolly monkey, and gibbon ape were not detectable in cells of those species, using assays of comparable sensitivity. Thus, differences exist in the level of endogenous virus expression in cells of different mammalian species.  相似文献   

12.
The scanning electron microscope was used to study the budding process of the wild-type Moloney murine leukemia virus and one of its temperature-sensitive mutants, designated ts 3. A considerably larger number of budding particles was observed on TB cells infected with ts 3 at the nonpermissive temperature (39 C) than at the permissive temperature (34 C). No apparent difference was noted between the number of particles on ts 3-infected cells at (34 C) and wild-type-infected cells at 34 or 39 C. Virions were detected at the cell membrane of ts 3-infected cells at 39 C as early as 8 h postinfection. Virion density increased progressively up to 48 h after which no increase was observed. An average of 1,600 virus particles was observed at the cell surface at the peak of virus production. The distribution of these on the cell membrane appeared to be random. The maximum proportion of the cell surface occupied by the viral particles did not exceed 10%. After temperature shift from 39 to 34 C, approximately 90% of the particles had dissociated from the cell membrane within 1 h.  相似文献   

13.
Rat C-Type Virus induced in Rat Sarcoma Cells by 5-Bromodeoxyuridine   总被引:9,自引:0,他引:9  
HALOGENATED derivatives of uridine are highly effective inducers of latent C-type RNA viruses1,2 and have been successfully used to induce viruses identical to, or similar to, the C-type RNA tumour viruses in mouse, rat and human cells3–6. In previous experiments we used 5-bromodeoxyuridine (BrUdR) for induction of focus-forming virus in non-productive rat cells that have been transformed by mouse sarcoma virus2. We describe here the induction of a C-type RNA virus in the cells of the rat tumour cell line XC, which contains the Rous sarcoma virus genome7. The induced virus possesses the group specific (gs) antigens of rat C-type viruses but not those of chicken C-type viruses.  相似文献   

14.
By electron microscopy and immunocytochemistry we have examined the retroviruses endogenous to AtT20 D16V cells, a cloned line of murine pituitary tumour cells. In addition to the C-type retrovirus particles related to Rauscher murine leukemia virus (MuLV) previously reported to bud from these cells we observed cytoplasmic A-type particles and intracisternal A-type particles (IAP). In the cytoplasm the A-type particles occur in large clusters often associated with sheets of material with a fine structure resembling the shells of the particles. At the plasma membrane individual A-type particles bud to give rise to extracellular virions. The IAP are restricted to the rough endoplasmic reticulum (RER) into which they bud: they are not transported out of the RER to the Golgi apparatus and beyond. We describe a new monoclonal antibody (designated 83E7) which is specific for an epitope of the major core protein (MTVp27) of mouse mammary tumour virus (MMTV). Using immunogold labelling procedures we have specifically labelled both the A-type particles and the associated sheets of material with this antibody. We conclude that the A-type particles and the virions they give rise to are MMTV. The sheets of material must also at least in part be made up of the major core protein of MMTV or its precursor polypeptide. AtT20 cells, therefore, contain endogenous MuLV and MMTV as well as IAP.  相似文献   

15.
We describe the generation and characterization of a series of deletion mutants of the avian acute leukaemia virus MC29 which allow the study of the function of the myc in transformation of quail embryo fibroblasts in vitro and tumour induction in vivo. These mutants, which are deleted in the 3' portion of the myc gene, fail to transform macrophages in vitro or induce tumours in vivo but are still able to transform morphologically fibroblasts. From one of these mutants a 'recovered' MC29 virus was generated which, like wild type MC29, transformed fibroblasts and macrophages in vitro. When tested in vivo this virus induced lymphomas of T and B cells rather that the endotheliomas induced by wild type MC29. This system allows us to investigate another question which is the mechanism by which the virus (or oncogene it contains) preferentially transforms one cell type.  相似文献   

16.
Three clones of morphologically altered cells (L(-)MC29) of singular properties were isolated from MC29 (subgroup A) leukosis virus-infected chick embryo cells. Supernatant fluids from cultures of the cloned cells produced no transforming or interfering activity on chick embryo cells susceptible to known avian leukosis-sarcoma viruses. No virus associated with the cells was demonstrable by fluorescent-antibody staining or by electron microscopy. All L(-)MC29 clone cells were activated, however, by four strains of Rous-associated viruses (RAV) representative of A, B, C, and D subgroup avian leukosis viruses and by two strains of MC29 virus. Virus L(-)MC29 cells activated by superinfection with RAV-1 and RAV-2 was characterized by helper-dependent and helper-independent properties. These findings suggest that the strain MC29 leukosis virus, or a component thereof, possesses properties of defectiveness similar to those of the Bryan high-titer Rous sarcoma virus.  相似文献   

17.
For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.  相似文献   

18.
Critical aspects of HIV-1 infection occur in mucosal tissues, particularly in the gut, which contains large numbers of HIV-1 target cells that are depleted early in infection. We used electron tomography (ET) to image HIV-1 in gut-associated lymphoid tissue (GALT) of HIV-1–infected humanized mice, the first three-dimensional ultrastructural examination of HIV-1 infection in vivo. Human immune cells were successfully engrafted in the mice, and following infection with HIV-1, human T cells were reduced in GALT. Virions were found by ET at all stages of egress, including budding immature virions and free mature and immature viruses. Immuno-electron microscopy verified the virions were HIV-1 and showed CD4 sequestration in the endoplasmic reticulum of infected cells. Observation of HIV-1 in infected GALT tissue revealed that most HIV-1–infected cells, identified by immunolabeling and/or the presence of budding virions, were localized to intestinal crypts with pools of free virions concentrated in spaces between cells. Fewer infected cells were found in mucosal regions and the lamina propria. The preservation quality of reconstructed tissue volumes allowed details of budding virions, including structures interpreted as host-encoded scission machinery, to be resolved. Although HIV-1 virions released from infected cultured cells have been described as exclusively mature, we found pools of both immature and mature free virions within infected tissue. The pools could be classified as containing either mostly mature or mostly immature particles, and analyses of their proximities to the cell of origin supported a model of semi-synchronous waves of virion release. In addition to HIV-1 transmission by pools of free virus, we found evidence of transmission via virological synapses. Three-dimensional EM imaging of an active infection within tissue revealed important differences between cultured cell and tissue infection models and furthered the ultrastructural understanding of HIV-1 transmission within lymphoid tissue.  相似文献   

19.
A tissue culture cell system for isolation and identification of members of the murine leukemia virus group (the complement fixation for murine leukemia test) was modified to permit the isolation of naturally occurring virus from leukemic and normal mice. The important factors for increasing the sensitivity of the test were the use of National Institutes of Health (NIH) strain Webster Swiss embryo cell cultures and the selection of rat-immune sera having complement-fixing antibodies to tissue culture antigens of both the Gross and FMR subgroups. In all, 163 strains of mouse leukemia virus, from 11 inbred mouse strains, have been isolated. Representative virus isolates were shown to possess the properties of the murine leukemia virus group; i.e., they were chloroform-sensitive, noncytopathic agents which replicated in mouse embryo tissue culture and produced group-reactive, complement-fixing antigen and budding C-type particles visible by electron microscopy. These viruses could serve as helpers in the rescue of Moloney sarcoma virus genome from non-producer hamster sarcoma cells, yielding pseudotypes. All of the 19 field isolates tested were neutralized by Gross passage A antiserum but not by potent antisera to the Moloney, Rauscher, and Friend strains. Virus was recovered regularly from embryos and from the plasma and spleen of adult mice of high leukemic strains. In low leukemic mouse strains, different patterns of virus detection were observed. In C3H/He mice, virus was occasionally present in embryos and was found in 40% of adult spleens. BALB/c mice were virus-negative as fetuses or weanlings, but spleens of more than half of the mice over 6 months of age yielded virus. NIH mice have never yielded virus. In reciprocal matings between AKR and BALB/c mice, virus recovery from embryos was maternally determined. The development of tissue culture isolation procedures made possible for the first time the application of classical infectious disease methods to the study of the natural history of murine leukemia virus infection.  相似文献   

20.
The target cell tropism of enveloped viruses is regulated by interactions between viral proteins and cellular receptors determining susceptibility at a host cell, tissue or species level. However, a number of additional cell-surface moieties can also bind viral envelope glycoproteins and could act as capture receptors, serving as attachment factors to concentrate virus particles on the cell surface, or to disseminate the virus infection to target organs or susceptible cells within the host. Here, we used Junín virus (JUNV) or JUNV glycoprotein complex (GPC)-pseudotyped particles to study their ability to be internalized by the human C-type lectins hDC- or hL-SIGN. Our results provide evidence that hDC- and hL-SIGN can mediate the entry of Junín virus into cells, and may play an important role in virus infection and dissemination in the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号