首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Saccharomyces cerevisiae strains were employed to investigate the effects of medium enrichment on the expression and secretion of a recombinant protein. One was a stable autoselection strain with mutations in the ura3, fur1, and urid-k genes. The combination of these three mutations blocks both the pyrimidine nucleotide biosynthetic and salvage pathways and is lethal to the cells. Retention of the plasmid, which carries a URA3 gene, was essential for cell viability. Therefore, all media were selective, allowing cultivation of the strain in complex medium. The second strain was a nonautoselection (control) strain and is isogenic to the first except for the fur1 and urid-k mutations. The plasmid utilized contains the yeast invertase gene under the control of the MFalpha1 promoter and leader sequence. The expression and secretion of invertase for the autoselection strain were examined in batch culture for three media: a minimal medium (SD), a semidefined medium (SDC), and a rich complex medium (YPD). Biomass yields and invertase productivity (volumetric activity) increased with the complexity of the medium; total invertase volumetric activity in YPD was 100% higher than in SDC and 180% higher than in SD. Specific activity, however, was lowest in the SDC medium. Secretion efficiency was extremely high in all three media; for the majority of the culture, 80-90% of the invertase was secreted into the periplasmic space and/or culture medium. A glucose pulse at the end of batch culture in YPD facilitated the transport of residual cytoplasmic invertase. For the nonautoselection strain, invertase productivity did not improve as the medium was enriched from SDC to YPD, and plasmid stability in the complex YPD medium dropped from 54% to 34% during one batch fermentation. During long-term sequential batch culture in YPD, invertase activity decreased by 90% and the plasmid-containing fraction dropped from 56% to 8.8% over 44 generations of growth. The expression level for the autoselection strain, however, remained high and constant over this time period, and no reversion at the fur1 or urid-k locus was observed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
An autoselection system for increasing plasmid stability in Kluyveromyces lactis, based on the blockage of the pyrimidine de novo and salvage pathways, was investigated. In a manner analogous to that used in Saccharomyces cerevisiae, a putative “fur1” mutation was selected in a uraA K. lactis strain using 5-fluorouracil and 5-fluorocytosine plates. Survival of the mutant required expression of a plasmid-borne URA3 gene regardless of the culture medium employed, verifying the efficacy of this autoselection system in K. lactis. The expression of heterologous invertase, encoded by the S. cerevisiae SUC2 gene, was studied during long-term sequential batch cultures (70 generations) in complex yeast/peptone/glucose medium. The fur1 mutant successfully retained the plasmid; invertase specific activity remained above 90% of the initial level. Furthermore, no mutation reversion was observed. In contrast, for the control non-fur1 strain, only 4% of the cells retained the plasmid after 70 generations, and invertase specific activity dropped to less than 10% of the initial level. Experiments comparing growth and activity in different media indicated the potential for improving productivity through medium enrichment using this autoselection system. Received: 1 April 1997 / Received revision: 16 August 1997 / Accepted: 11 September 1997  相似文献   

3.
The effects of plasmid promoter strength and origin of replication on cloned gene expression in recombinant Saccharomyces cerevisiae have been studied in batch and continuous culture. The plasmids employed contain the Escherichia coli lacZ gene under the control of yeast promoters regulated by the galactose regulatory circuit. The synthesis of beta-galactosidase was therefore induced by the addition of galactose. The initial induction transients in batch culture were compared for strains containing plasmids with 2mu and ARS1 origins. As expected, cloned gene product synthesis was much lower with the ARS1 plasmid: average beta-galactosidase specific activity was an order of magnitude below that with the 2mu-based plasmid. This was primarily due to the low plasmid stability of 7.5% when the plasmid origin of replication was the ARS1 element. The influence of plasmid promoter strength was studied using the yeast GAL1, GAL10, and hybrid GAL10-CYC1 promoters. The rate of increase in beta-galactosidase specific activity after induction in batch culture was 3-5 times higher with the GAL1 promoter. Growth rate under induced conditions, however, was 15% lower than in the absence of lacZ expression for this promoter system. The influence of plasmid promoter strength on induction behavior and cloned gene expression was also studied in continuous fermentations. Higher beta-galactosidase production and lower biomass concentration and plasmid stability were observed for the strain bearing the plasmid with the stronger GAL1 promoter. Despite the decrease in biomass concentration and plasmid stability, overall productivity in continuous culture using the GAL1 promoter was three times that obtained with the GAL10-CYC1 promoter.  相似文献   

4.
Growth yield factors, plasmid stability, cellular plasmid content, and cloned gene product activity for Escherichia coli HB101 containing plasmid pDM246 were measured at several dilution rates in continuous culture. Cell mass yield per mass of glucose consumed declined with increasing dilution rate. There was no evidence of plasmid segregational instability in any experiments, none of which employed selective medium. Plasmid content per cell varied with population-specific growth rate as observed in earlier batch experiments with the same strain. Plasmid content declined with increasing specific growth rate following indication of a maximum number of plasmids per cell at specific growth rates of ca. 0.3 h(-1). Cloned gene product (beta-lactamase) activity exhibited a sharp maximum with respect to dilution rate in continuous culture. Qualitatively different results were observed in previous experiments in batch cultivation in which specific growth rate changes were effected by altering medium composition.  相似文献   

5.
An alpha-amylase gene from Bacillus coagulans has previously been cloned in Escherichia coli and shown to direct the synthesis of an enzymically active protein of 60,000 Dal (Cornelis et al., 1982). In one particular E. coli host, strain HB101, amylase was found to accumulate in the periplasmic space. To study the processing and the location of the amylase, plasmid pAMY2 was introduced into E. coli 188 which is a strain constitutive for alkaline phosphatase, a periplasmic marker, and for beta-galactosidase, a cytoplasmic marker. Abnormally large amounts of both alpha-amylase and beta-galactosidase were found in the culture fluid of cells grown in rich medium. Furthermore a severe growth defect was found when cells containing pAMY2 were grown in maltose and glycerol media, while the ability to grow on glucose remained normal. This defect could be reversed by two types of spontaneous mutations. Mutations in the first class are located on the plasmid and correspond to the insertional inactivation of the amylase gene by IS1. Mutations in the second class are located on the host chromosome. These results suggest that the synthesis and export of B. coagulans alpha-amylase is deleterious to E. coli, especially in media containing maltose or glycerol as sole carbon source.  相似文献   

6.
A recombinant yeast plasmid carrying the Ieu2 gene for auxotrophic complementation and a reporter gene for beta-galactosidase under the control of Gal10 promoter was studied in Saccharomyces cerevisiae. Growth, product formation, and plasmid stability were studied in defined, semi-defined, and complex media. The biomass concentration and specific activity were higher in complex medium than in defined medium, which was selective for the growth of plasmid-containing cells, leading to a 10-fold increase in volumetric activity. However, plasmid instability was very high in complex media with 50% plasmid-free cells emerging in the culture within 75 h of cultivation. In order to control instability, the growth rates of the plasmid-containing and plasmid-free cells were determined in semi-defined media, which consisted of defined medium supplemented with different concentrations of yeast extract. Below a critical concentration of yeast extract (0.05 g/L), the plasmid-containing cells had a growth rate advantage over the plasmid-free cells. This was possibly because, at this concentration of yeast extract, the availability of leucine became the rate-determining factor in the specific growth rate of plasmid-free cells. A feeding strategy was designed which maintained a low concentration of the residual yeast extract in the medium and thus continuously provided the plasmid-containing cells with a competitive advantage over the plasmid-free cells. This resulted in high stability as well as high cell density under non-selective conditions, which led to a 10-fold increase in the volumetric activity compared to that achieved in defined selective media. A simple mathematical model was formulated to verify the experimental data. The important state variables and process parameters, i.e., biomass concentration, beta-galactosidase expression, sucrose consumption, yeast extract consumption, and specific growth rates of the two cell populations, were evaluated. These variables and parameters along with the differential equations based on material balances as well as the experimental results obtained were used in a mathematical model for the fed-batch cultivation. These correctly verified the experimental data and clearly illustrated the concept behind the success of the fed-batch strategy under yeast extract starvation.  相似文献   

7.
The ability of industrial strains of mesophylic Streptococcus diacetylactis to synthesize the enzyme beta-galactosidase has been studied. Among the 22 studied strains 8 were found to synthesize the enzyme. Plasmid DNA was isolated from the Streptococcus diacetylactis strain 144 possessing the highest level of beta-galactosidase activity. The cells of the strain harbour the 35, 40 and 60 kb plasmids. The alpha-galactosidase genes from this strain was cloned in Escherichia coli cells. The gene is located on the BglIII DNA fragment of the total plasmid DNA from Streptococcus diacetylactis the size of 2.8 kb. Following the Sau3A restriction endonuclease digestion the gene was subcloned on a birepliconed vector plasmid pCB20. The latter is capable of replication in the Gram-negative as well as Gram-positive microorganisms. The pCB20 derivatives carrying the different length fragments with the beta-galactosidase gene were isolated. DNA of an obtained plasmid was used for transformation of Streptococcus diacetylactis cells. The presence of the recombinant plasmid in streptococcus strain 144 results in the 1.8 fold increase in beta-galactosidase production.  相似文献   

8.
A beta-galactosidase gene from Clostridium acetobutylicum NCIB 2951 was expressed after cloning into pSA3 and electroporation into derivatives of Lactococcus lactis subsp. lactis strains H1 and 7962. When the clostridial gene was introduced into a plasmid-free derivative of the starter-type Lact. lactis subsp. lactis strain H1, the resulting construct had high beta-galactosidase activity but utilized lactose only slightly faster than the recipient. beta-galactosidase activity in the construct decreased by over 50% if the 63 kb Lac plasmid pDI21 was also present with the beta-galactosidase gene. Growth rates of Lac+ H1 and 7962 derivatives were not affected after introduction of the clostridial beta-galactosidase, even though beta-galactosidase activity in a 7962 construct was more than double that of the wild-type strain. When pDI21 was electroporated into a plasmid-free variant of strain 7962, the recombinant had high phospho-beta-galactosidase activity and a growth rate equal to that of the H1 wild-type strain. The H1 plasmid-free strain grew slowly in T5 complex medium, utilized lactose and contained low phospho-beta-galactosidase activity. We suggest that beta-galactosidase expression can be regulated by the lactose phosphotransferase system-tagatose pathway and that Lact. lactis subsp. lactis strain H1 has an inefficient permease for lactose and contains chromosomally-encoded phospho-beta-galactosidase genes.  相似文献   

9.
10.
Widely applied selection strategies for plasmid-containing cells in unstable recombinant populations are based upon synthesis in those cells of an essential, selection gene product. Regular partitioning of this gene product combined with asymmetric plasmid segregation produces plasmid-free cells which retain for some time the ability to grow in selective medium. This theory is elaborated here in terms of a segregated model for an unstable recombinant population which predicts population growth characteristics and composition based upon experimental data for stable strain growth kinetics, plasmid content, and selection gene product stability. Analytical solutions from this model are compared with an unsegregated phenomenological model to evaluate the effective specific growth rate of plasmid-free cells in selective medium. Model predictions have been validated using experimental growth kinetics and flow cytometry data for Saccharomyces cerevisiae D603 populations containing one of the plasmids YCpG1ARS1, YCpG1DeltaR8, YCpG1DeltaR88, YCpG1DeltaH103, YCpG1DeltaH200, pLGARS1, and pLGSD5. The recombinant strains investigated encompass a broad range of plasmid content (from one to 18 plasmids per cell) and probability alpha of plasmid loss at division (0.05 相似文献   

11.
The recombinant human granulocyte-colony-stimulating factor (rhG-CSF) was synthesized in a fusion protein using a GAL1-10 UAS in recombinant Saccharomyces cerevisiae and the intracellular KEX2 cleavage led excretion of mature rhG-CSF into the extracellular culture broth. The recombinant yeast growth in fed-batch cultures was controlled by precise computer-aided medium feed. The optimal C/N ratio in preinduction (glucose/Casamino acids) and post-induction (galactose/yeast extract) feed media was determined at 3 and 2, respectively. The final rhG-CSF and cell concentration was more than 60 mg/L and 70 g/L, respectively, with around 90% plasmid stability and negligible ethanol accumulation. Comparing the cell growth between the hG-CSF + and hG-CSF - recombinant strains shows that the cloned gene product does not hamper the host cell growth.  相似文献   

12.
Though RpoS, an alternative sigma factor, is required for survival and adaptation of Escherichia coli under stress conditions, many strains have acquired independent mutations in the rpoS gene. The reasons for this apparent selective loss and the nature of the selective agent are not well understood. In this study, we found that some wild type strains grow poorly in succinate minimal media compared with isogenic strains carrying defined RpoS null mutations. Using an rpoS+ strain harboring an operon lacZ fusion to the highly-RpoS dependent osmY promoter as an indicator strain, we tested if this differential growth characteristic could be used to selectively isolate mutants that have lost RpoS function. All isolated (Suc+) mutants exhibited attenuated beta-galactosidase expression on indicator media suggesting a loss in either RpoS or osmY promoter function. Because all Suc+ mutants were also defective in catalase activity, an OsmY-independent, RpoS-regulated function, it was likely that RpoS activity was affected. To confirm this, we sequenced PCR-amplified products containing the rpoS gene from 20 independent mutants using chromosomal DNA as a template. Sequencing and alignment analyses confirmed that all isolated mutants possessed mutated alleles of the rpoS gene. Types of mutations detected included single or multiple base deletions, insertions, and transversions. No transition mutations were identified. All identified point mutations could, under selection for restoration of beta-galactosidase, revert to rpoS+. Revertible mutation of the rpoS gene can thus function as a genetic switch that controls expression of the regulon at the population level. These results may also help to explain why independent laboratory strains have acquired mutations in this important regulatory gene.  相似文献   

13.
The effects of growth rate on cloned gene product synthesis in recombinant Saccharomyces cerevisiae have been studied in continuous culture. The plasmid employed contains a yeast GAL10-CYC1 hybrid promoter directing expression of the E. coli lacZ gene. beta-Galactosidase production was therefore controlled by the yeast galactose regulatory circuit, and the induction process and its effects were studied at the various dilution rates. At all dilution rates plasmid stability decreased with induction of lacZ gene expression. In some instances, two induced "steady states" were observed, the first 10-15 residence times after induction and the second after 40-50 residence times. The second induced steady state was characterized by greater biomass concentration and lower beta-galactosidase specific activity relative to the first induced "steady-state." beta-Galactosidase specific activity and biomass concentration increased as dilution rate was reduced, and despite lower flow rate and plasmid stability, overall productivity (activity/L/hr) was substantially higher at low dilution rate. Important factors influencing all of the trends were the glucose and galactose (inducer) concentrations in the vessel and inducer metabolism.  相似文献   

14.
We set out to investigate if E. coli genotype plays a significant role in host strain selection for optimal processing of plasmid DNA based on both quality and quantity of supercoiling. Firstly 17 E. coli commercial and non-commercial strains were selected and their available genetic backgrounds were researched in the open literature. Growth characteristics of all the strains were considered and made impartial by using a common medium and growth condition platform. By keeping the growth conditions constant for each strain/plasmid combination, we are only looking at one variable which is the host strain. The second step was to attempt to correlate the findings with common genotype characteristics (e.g. mutations such as endA or recA). We found that one can screen the number of strains which are likely to give good productivity early on, before any further optimisation and verification is performed, both for small and large plasmids. Also, it is worth noting that complex plasmid interactions with each strain prevent the use of genotype alone in making an intelligent choice for supercoiling optimisation. This leads to a third optimisation step selecting a few of the potentially high performing strains based on high DNA yield and supercoiling, with a view to identify the factors which need improvement in strain design and bioreactor optimisation. We found that high specific growth rates of some strains did not affect the level of DNA supercoiling but did influence the total plasmid yield, potentially an important aspect in the design of fermentation strategy. Interestingly, a few host/plasmid combinations result in what appears to be runaway plasmid replication.  相似文献   

15.
Secretion of the heterologous Kluyveromyces lactis beta-galactosidase into culture medium by several Saccharomyces cerevisiae osmotic-remedial thermosensitive-autolytic mutants was assayed and proved that new metabolic abilities were conferred since the constructed strains were able to grow in lactose-containing media. Cell growth became independent of a lactose-uptake mechanism. Higher levels of extra-cellular and intra-cellular beta-galactosidase production, lactose consumption and growth were obtained with the LHDP1 strain, showing a thermosensitive-autolytic phenotype as well as being peptidase-defective. The recombinant strain LHDP1 presented the highest beta-galactosidase yields from biomass and the lowest ethanol levels from lactose. This strain is effective for the heterologous production and release of K. lactis beta-galactosidase into the extra-cellular medium after osmotic shock.  相似文献   

16.
A novel feeding strategy in fedbatch recombinant yeast fermentation was developed to achieve high plasmid stability and protein productivity for fermentation using low-cost rich (non-selective) media. In batch fermentations with a recombinant yeast, Saccharomyces cerevisiae, which carried the plasmid pSXR125 for the production of beta-galactosidase, it was found that the fraction of plasmid-carrying cells decreased during the exponential growth phase but increased during the stationary phase. This fraction increase in the stationary phase was attributed to the death rate difference between the plasmid-free and plasmid-carrying cells caused by glucose starvation in the stationary phase. Plasmid-free cells grew faster than plasmid-carrying cells when there were plenty of growth substrate, but they also lysed or died faster upon the depletion of the growth substrate. Thus, pulse additions of the growth substrate (glucose) at appropriate time intervals allowing for significant starvation period between two consecutive feedings during fedbatch fermentation should have positive effects on stabilizing plasmid and enhancing protein production. A selective medium was used to grow cells in the initial batch fermentation, which was then followed with pulse feeding of concentrated non-selective media in fedbatch fermentation. Both experimental data and model simulation show that the periodic glucose starvation feeding strategy can maintain a stable plasmid-carrying cell fraction and a stable specific productivity of the recombinant protein, even with a non-selective medium feed for a long operation period. On the contrary, without glucose starvation, the fraction of plasmid-carrying cells and the specific productivity continue to drop during the fedbatch fermentation, which would greatly reduce the product yield and limit the duration that the fermentation can be effectively operated. The new feeding strategy would allow the economic use of a rich, non-selective medium in high cell density recombinant fedbatch fermentation. This new feeding strategy can be easily implemented with a simple IBM-PC based control system, which monitors either glucose or cell concentration in the fermentation broth.  相似文献   

17.
A new suicide vector, pRVS1, was constructed to facilitate the site-directed introduction of unmarked mutations in the chromosome of Paracoccus denitrificans. The vector was derived from suicide vector pGRPd1, which was equipped with the lacZ gene encoding beta-galactosidase. The reporter gene was found to be a successful screening marker for the discrimination between plasmid integrant strains and mutant strains which had lost the plasmid after homologous recombination. Suicide vectors pGRPd1 and pRVS1 were used in gene replacement techniques for the construction of mutant strains with multiple mutations in the cycA, moxG, and cycB genes encoding the periplasmic cytochromes c550, c551i, and c553i, respectively. Southern analyses of the DNA and protein analyses of the resultant single, double, and triple mutant strains confirmed the correctness of the mutations. The wild type and mutant strains were all able to grow on succinate and choline chloride. In addition, all strains grew on methylamine and displayed wild-type levels of methylamine dehydrogenase activities. cycA mutant strains, however, showed a decreased maximum specific growth rate on the methylamine substrate. The wild-type strain, cycA and cycB mutant strains, and the cycA cycB double mutant strain were able to grow on methanol and showed wild-type levels of methanol dehydrogenase activities. moxG mutant strains failed to grow on methanol and had low levels of methanol dehydrogenase activities. The maximum specific growth rate of the cycA mutant strain on methanol was comparable with that of the wild-type strain. The data indicate the involvement of the soluble cytochromes c in clearly defined electron transport routes.  相似文献   

18.
The effectiveness of the hok/sok plasmid stability locus and mechanism of cloned-gene loss was evaluated in shake-flask cultures. Addition of the hok/sok locus dramitically increasedapparent plasmid segregational stability to the hok/sok(-) control. In terms of the number of generations before 10%of the population became plasmid-free, segregational stability was increased by 11- to 20-fold in different media in the absence of induction of the cloned-gene (hok/sok(+) plasmid stable for over 200 generations in all media tested). With constant expression of beta-galactosidase in the absence of an tibiotic, the segregational stability of the plasmid containing hok/sok was incresed more than 17- to 30-fold when beta-galactosidase was expressed at 7-15 wt % of total cell protein. Although the hok/sok system stabilized the plasmid well infour different media (Luria-Bertani (LB), LB glucose, M9C Trp, and a representative fedbatch medium), the ability of hok/sok to maintain the plasmid with induction of the cloned gene decreased as the complexity of the media increased. This result is better interpreted in terms of the influence of cloned-gene expression on plasmidmaintenance; plasmid segregational stability decreased linearly as specificbeta-galactosidase activity increased. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
The Agrobacterium VirG protein is normally expressed from two promoters in response to multiple stimuli, including plant-released phenolics (at promoter P1) and acidic growth media (at promoter P2). To simplify the analysis of vir gene induction, we sought to create Agrobacterium strains in which virG could be expressed in a controllable fashion. To study the possibility of using the lac promoter and repressor, we constructed a plasmid containing the lac promoter fused to the lacZ structural gene. A derivative of this plasmid containing the lacIq gene was also constructed. The plasmid not containing lacIq expressed high levels of beta-galactosidase. The plasmid containing lacIq expressed beta-galactosidase at very low levels in the absence of o-nitrophenyl-beta-D-galactoside (IPTG) and at moderate levels in the presence of IPTG. We also fused the lac promoter to a virG::lacZ translational fusion and found that IPTG elevated expression of this translational fusion to moderate levels, though not to levels as high as from the stronger of the two native virG promoters. Finally, the lac promoter was used to express the native virG gene in strains containing a virB::lacZ translational fusion. virB expression in this strain depended on addition of IPTG as well as the vir gene inducer acetosyringone. In a similar strain lacking lacIq, virB expression was greater than in a strain in which virG was expressed from its native promoters. Expression of virG from the lac promoter did not alter the acidic pH optimum for vir gene induction, indicating that the previously observed requirement for acidic media was not due solely to the need to induce P2.  相似文献   

20.
A flocculent Saccharomyces cerevisiae strain secreting Aspergillus niger beta-galactosidase activity was constructed by transforming S. cerevisiae NCYC869-A3 strain with plasmid pVK1.1 harboring the A. niger beta-galactosidase gene, lacA, under the control of the ADH1 promoter and terminator. Compared to other recombinant S. cerevisiae strains, this recombinant yeast has higher levels of extracellular beta-galactosidase activity. In shake-flask cultures, the beta-galactosidase activity detected in the supernatant was 20 times higher than that obtained with previously constructed strains (Domingues et al. 2000a). In bioreactor culture, with cheese-whey permeate as substrate, a yield of 878.0 nkat/gsubstrate was obtained. The recombinant strain is an attractive alternative to other fungal beta-galactosidase production systems as the enzyme is produced in a rather pure form. Moreover, the use of flocculating yeast cells allows for enzyme production with high productivity in continuous fermentation systems with facilitated downstream processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号