首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study in sheep ovaries was to determine the total number of granulosa cells in primordial follicles and at subsequent stages of growth to early antrum formation. The second aim was to examine the interrelationships among the total number of granulosa cells in the follicles, the number of granulosa cells in the section through the oocyte nucleolus, and the diameter of the oocyte. A third aim was to examine whether proliferating cell nuclear antigen labelling occurred in flattened granulosa cells in primordial follicles or was confined to follicles containing cuboidal granulosa cells. The follicles were classified using the section through the oocyte nucleolus by the configuration of granulosa cells around the oocyte as type 1 (primordial), type 1a (transitory), type 2 (primary), type 3 (small preantral), type 4 (large preantral), and type 5 (small antral). In type 1 follicles, the number of granulosa cells and oocyte diameter were highly variable in both fetal and adult ovaries. Each type of follicle was significantly different from the others (all P < 0.05) with respect to oocyte diameter, number of granulosa cells in the section through the oocyte nucleolus and total number of granulosa cells. Follicles classified as type 2, 3, 4 or 5 each corresponded to two doublings of the total granulosa cell population. The relationships between oocyte diameter and the number of granulosa cells (that is, in the section through the oocyte nucleous or total population per follicle) could all be described by the regression equation loge chi = a + b loge gamma with the correlation coefficients R always > 0.93. For each pair of variables the slopes (b) for each type of follicle were not different from the overall slope for all types of follicle pooled. Immunostaining for proliferating cell nuclear antigen was observed in granulosa cells in type 1 follicles, as well as in the other types of follicle. These findings indicate that 'flattened' granulosa cells in type 1 follicles express an essential nuclear protein involved in cell proliferation before assuming the cuboidal shape. Thus, when considering factors that regulate specific phases of early follicular growth, it is important to consider: (i) the follicle classification system used; (ii) the animal model studied; (iii) whether type 1 follicles are all quiescent; and (iv) the likelihood that each follicle type represents more than one doubling of the population of granulosa cells.  相似文献   

2.
3.
An enzymatic method was developed to collect intact follicles at different stages of development from cyclic hamsters to study ovarian folliculogenesis under various circumstances. Ovaries from 6 adult hamsters on each day of the cycle (Day 1 = ovulation) were collected, corpora lutea and large preantral and antral follicles were dissected, and follicles saved. Minced ovaries were then incubated with a mixture of collagenase, DNAse and pronase at 37 degrees C for 20 min to disperse intact follicles. Histological studies with 2191 isolated follicles revealed 10 different stages of follicular development (depending on the number of granulosa cell layers surrounding the oocyte and development of the antrum). Of the total follicular population, 14% showed signs of atresia, with 50% of those having 1-3 layers of granulosa cells (Stages 1-3); a second peak of 18% was observed in antral follicles (Stages 8-10). No signs of thecal cells were evident until the follicles reached Stage 6 (7-8 layers of granulosa cells), which possibly accounts for reduced atresia in this class and beyond. Ultrastructural study revealed that there were no signs of morphological damage to the basement membrane or to other subcellular organelles in the small preantral follicles. The presence of subnuclear lipid droplets in follicles with 3 layers of granulosa cells provided evidence for potential steroidogenesis by small follicles. The number of Stage 1-10 follicles was remarkably constant throughout the estrous cycle (460 +/- 34 per animal on Day 1 vs. 492 +/- 66 on Day 4). The usefulness of this method in analyzing follicular kinetics is illustrated in experiments involving hypophysectomy and the effects of unilateral ovariectomy. This procedure offers an improved method to study the factors responsible for the growth and the differentiation of small preantral follicles in the mammalian ovary.  相似文献   

4.
The aim of the present study was to characterize the ultrastructure of zebu cow preantral follicles (PAFs). Ovarian cortex samples were processed for light and transmission electron microscopy. Primordial follicles consisted of an oocyte surrounded by one layer of flattened or flattened-cuboidal granulosa cells. The oocyte contained a large and usually eccentric nucleus. Most organelles were located at the perinuclear ooplasm. Round shaped mitochondria, which contained electron-dense granules, smooth and rough endoplasma reticulum and a Golgi apparatus were also observed. Vesicles and coated pits were often observed in the cortical ooplasm. In primary follicles, the oocyte was surrounded by one layer of cuboidal granulosa cells. Short microvilli were observed on the oolema. Secondary follicles consisted of an oocyte surrounded by a variable number of layers of cuboidal granulosa cells. Small secondary follicles had an ultrastructure very similar to that observed in primary follicles. At this follicular stage, the zona pellucida was beginning to form around the oocyte. In large secondary follicles, the zona pellucida was totally developed around the oocyte. Several granulosa cell projections could be detected that were encroaching into the zona pellucida and protruding towards the oocyte, where gap junctions were observed between oocyte and granulosa cell membranes. Organelles within the oocyte were located at the periphery of the ooplasm, and clusters of cortical granules were observed. Round mitochondria were abundant in all developmental stages. In conclusion, this study described the ultrastructure of zebu cow PAFs, and some unique characteristics could be observed as compared with what has been reported for follicles of Bos taurus cattle.  相似文献   

5.
The hypothesis was that long-term treatment of cattle with estradiol (E(2)) and bovine somatotropin (bST) would alter the earliest stages of folliculogenesis. Nonlactating Holstein cows (n = 26) were treated in a 2 x 2 arrangement with E(2) (2 x 24 mg implants, 67.1 +/- 1.4 days) and bST (Posilac, 63.6 +/- 1.5 days). At Day 67 +/- 1.3, one ovary was removed for morphometric and immunohistochemical analysis. For each ovary, 388 +/- 38 microscopic fields (2 x 2 mm) were examined and follicles within each field were classified by histological stage. Fields that contained no follicles were classified as empty. Empty fields (n = 100 per ovary) were further classified as containing no evidence of follicles or containing atretic remnants of follicles. Approximately 30 4-microm sections per ovary were stained for proliferating cell nuclear antigen (PCNA), and 150 fields per ovary were evaluated. Additional sections (n = 10 per ovary) were assessed immunohistochemically for apoptosis, and fluorescence intensity was determined for each follicle. Treatment with bST significantly decreased percentage of empty fields containing atretic remnants. Treatment with E(2) induced activation of follicles as shown by a decrease in percentage of primordial follicles and an increase in percentage of primary follicles as determined by PCNA staining. At the primary follicle stage the combination of bST + E(2) decreased apoptosis as shown by decreased fluorescence intensity. Thus, E(2) induced activation of follicles, bST enhanced survival, and the combination lowered atresia.  相似文献   

6.
To better understand the role of estradiol-17β in fetal ovarian development, presence and localization of cytochrome P450 aromatase (P450arom) and estrogen receptors alpha (ERα) and beta (ERβ) proteins were characterized in fetal ovaries of cattle using immunohistochemistry. Fetal cattle ovaries were collected from an abattoir and sorted into fetal age groups (days 110, 130, 150, 170, 190, 210, 230, 250+) based on crown-rump length. In addition to immunohistochemistry, morphological analysis of ovarian and follicular formation was made. Ovaries appeared lobular at day 110, but by the end of gestation (day 250+) ovaries were oval-shaped similar to those found in adult animals. Ovarian structures within different lobes appeared to be at different developmental stages. At day 110, oocytes and pre-granulosa cells were observed in ovigerous cords that were still open to the surface epithelium. Most ovigerous cords appeared to be closed to the surface epithelium on day 130, all closed by day 150 and were no longer present at day 210. Ovarian follicles were classified as follows: Type 1(primordial): single layer of flattened granulosa cells, Type 1a (transitory): single layer of mixed flattened and cuboidal granulosa cells, Type 2 (primary): at least one but less than two layers of cuboidal granulosa cells, Type 3 (small preantral): two to three layers of granulosa cells, Type 4 (large preantral): four to six layers of granulosa, and the theca layer is forming around the follicle, Type 5 (antral): contain greater than six layers of granulosa cells, several layers of theca cells and the antrum has formed. Type 1 follicles were observed in day 110 ovaries. Follicle Types 1a and 2 were first observed on day 130. Type 3 follicles were first observed on day 150 and Types 4 and 5 were first observed on day 170. P450arom protein was localized in granulosa cells of follicle Types 2–5 and cells of rete tubules throughout the experimental period. There was punctate expression within stroma and rete masses. There was ERα protein localization in pre-granulosa cells and germ cells of ovigerous cords and all surface epithelial cells. There was also localization in granulosa cells and oocytes of all follicle types and cells of rete tubules. There was punctate ERα protein expression in stroma and rete masses. ERβ protein was localized in pre-granulosa cells and germ cells of ovigerous cords. Expression was also localized to granulosa cells of all follicle types and cells of rete tubules. ERβ protein was punctate in oocytes of follicles, surface epithelial cells, stroma and rete masses. Thus, the fetal ovary of cattle has the steroidogenic enzyme (P450arom) to convert androgens to estradiol-17β, and estrogen receptors α and β to facilitate an estrogen response within the fetal ovary.  相似文献   

7.
The factors that control the rate of granulosa cell proliferation during follicular development are unknown. The object of this study was to test the hypothesis that growth rates of small and medium follicles may be modulated by cyclic alterations in endogenous hormone concentrations. Follicular growth in adult cycling rats was compared with hypophysectomized rats, untreated prepubertal rats, and prepubertal rats treated with exogenous gonadotropins. Cell kinetics was studied using a metaphase arrest technique and by long-term infusion of [3H]thymidine. Many follicles of hypophysectomized rats showed evidence of continued cell proliferation despite the absence of gonadotropins. In hypophysectomized rats, follicular growth was able to proceed to the size of the largest healthy non-preovulatory follicles in the proestrous rat ovary. Follicular growth in prepubertal rats progressed little beyond this same size range. Granulosa cell proliferation rates differed in immature rats and cycling rats. Granulosa cells in small follicles (80-180 cells in the largest cross-section) of cycling rats grew slowly. However, granulosa cells in small follicles of immature rats were among the fastest growing in the ovary. These results suggest that, although gonadotropins are not absolutely required to maintain granulosa cell proliferation in small follicles, the rate at which these follicles grow varies under different hormonal conditions.  相似文献   

8.
9.
This study was designed to develop preantral follicle isolation and classification protocols for the domestic dog as a model for endangered canids. Ovary donors were grouped by age, size, breed purity, ovary weight and ovary status. Ovaries were randomly assigned to 1 of 3 digestion protocols: A) digestion and follicle isolation on the day of spaying; B) storage at 4 degrees C for 18 to 24 h prior to digestion and follicle isolation; C) digestion on the day of spaying, then incubation at 4 degrees C for 18 h prior to follicle isolation. Minced tissue was placed in a collagenase/DNase solution at 37 degrees C for 1 h. Follicles were classified by oocyte size and opaqueness and by size and appearance of the granulosa cell layers. Preantral follicles contained small, pale oocytes. Preantral follicles containing grown oocytes with dense cytoplasmic lipid were designated as advanced preantral. Only advanced preantral and early antral follicles were examined and classified further. Group 1 follicles had incomplete or absent granulosa layers, Group 2 follicles had several intact granulosa layers, while Group 3 were vesicular (early antral) follicles. Misshapen or pale grown oocytes were classified as degenerated. The percentage of intact germinal vesicles (GV) was recorded for each Group. Digestion Protocol B produced the lowest percentage of degenerated follicles (P < 0.01). Prepubertal donors had fewer (P < 0.01) follicles in each Group and more (P < 0.001) degenerated follicles than older bitches. Larger ovaries yielded the highest total number of follicles (P < 0.05). Ovary status did not affect follicle yield. Oocytes from Group 1 follicles had fewer intact GVs than those from Group 2 or Group 3 (P < 0.0001). These findings provide an opportunity for quantitative studies of the factors regulating folliculogenesis in the domestic dog as a model for endangered canids.  相似文献   

10.
To evaluate the relation between the steroidogenic activity and cell proliferation of individual follicles in mature hamster ovaries during the estrous cycle, the localization of enzymes involved in estrogen biosynthesis and bromodeoxyuridine (BrdU) incorporation were examined immunohistochemically. Moreover, granulosa cells from the early atretic follicle were examined by scanning and transmission electron microscopy. Immunoreactivity for aromatase was localized in the granulosa cells of healthy developing follicles and Graafian follicles, as well as in newly formed granulosa lutein cells. In the healthy follicles of an ovulation cycle, intensity of aromatase immunoreactivity was suddenly decreased on day 3. The theca interna cells of healthy developing follicles were immunopositive for 17-hydroxylase/C17–C20 lyase (17-lyase) from day 2 to the morning of day 4, but on the evening of day 4 most theca interna cells were immunonegative except for only a few cells of the large Graafian follicles. BrdU incorporation was observed in the granulosa cells of healthy developing follicles, in the endothelial cells of capillaries around the developing follicles, and of newly formed corpora lutea. Very early morphological signs of atresia was the pyknotic change of a few granulosa cells lining the antral cavity. In that follicle, the number of BrdU-incorporating granulosa cells was suddenly decreased whilst immunoreactivity of aromatase and 17-lyase were gradually decreased. These data suggest that the mechanism of the loss of aromatase activity from the granulosa cells of atretic follicles appears to differ from that in cycling follicles. Even in the early stage of atresia, the granulosa cells showed remarkable morphological change characteristic of apoptosis, as visualized by scanning and transmission electron microscopy. Cessation of granulosa cell proliferation may occur earlier than apoptotic change and the degeneration of the granulosa cells becomes rapid once atresia starts.  相似文献   

11.
Animals heterozygous (I+) for the Inverdale prolificacy gene (FecX(I)) have an increased ovulation rate whereas those homozygous (II) for FecX(I) are infertile with "streak" ovaries and follicular development arrested at the primary (type 2 follicle) stage. The streak ovaries also contain small oocyte-free nodules with granulosa-like cells and often tumor-like structures. It has been hypothesized that these abnormal structures are of granulosa cell origin, and the aim of this study was to determine whether genes normally expressed in granulosa cells are also expressed in the nodules and tumor-like structures. The mRNAs encoding c-kit and its ligand stem cell factor (SCF), FSH receptor (FSH-R), follistatin, alpha-inhibin subunit, and the beta(A)- and beta(B)-activin/inhibin subunits were localized in ovaries of ewes with 0 (++), 1 (I+), or 2 (II) copies of the FecX(I) gene (n = 4-9 animals per genotype per gene) using in situ hybridization. Ontogeny of expression of all mRNAs examined was similar between ++ and I+ ewes. Expression of c-kit mRNA was observed in the oocyte of all follicular types present in ++, I+, and II ewes. Moreover, granulosa cells of type 2 (II) and type 2 and larger follicles (++, I+) expressed SCF mRNA. The mRNAs encoding FSH-R, follistatin, alpha-inhibin subunit, and beta(B)-activin/inhibin subunit were identified in type 3 and larger follicles of ++ and I+ ewes but not in follicles of II ewes that were only at the type 1, 1a, or 2 stages of development. However, the cells within the oocyte-free nodules of II ewes expressed all of these genes. The mRNAs encoding c-kit and beta(A)-activin/inhibin subunit were not observed in granulosa cells until antrum formation (type 5 follicles) or in the nodules of II ewes. Tumors from 4 ewes were obtained and classified as cystic, semisolid, or solid structures containing granulosa-like cells or as solid structures containing predominately fibroblast- and luteal-like cells. Often, two tumors were present on the same ovary. Tumors containing granulosa-like cells (n = 3-4 per gene) expressed the mRNAs encoding alpha-inhibin subunit, beta(A)-, and beta(B)-activin/inhibin subunits, follistatin, and the FSH-R but did not contain detectable amounts of mRNA for c-kit or SCF. Tumors composed predominately of fibroblast- and luteal-like cells expressed very low levels of SCF mRNA; of the other mRNAs examined, none were detected. Also, none of the genes examined were found to be expressed by the surface epithelium, theca externa, fibroblast, or vascular cells within the ovary of animals of any genotype. These findings are consistent with the hypothesis that the somatic cells in oocyte-free nodules and tumor-like tissue in II ewes originate from the granulosa cells of the small follicles.  相似文献   

12.
13.
A study was conducted to develop an in vitro culture system for growing sheep oocytes from isolated primordial follicles. Enzymatically isolated neonatal sheep primordial follicles were cultured in Waymouth MB752/1 medium containing BSA (3 mg/ml) + ITS (1%, v/v) over 28 days. In Experiment 1, primordial follicles (average diameter 40.2+/-0.60 microm) were cultured at densities of 20, 50 and 100 follicles per well. Less than 20% of the oocytes survived to day 28 but there was a significant (P < 0.05) increase in median oocyte diameter from day 2 to day 28 for oocytes cultured at the higher densities of 50 and 100 follicles. In Experiment 2, two methods to improve oocyte:granulosa cell associations were tested. Altering the fibronectin coating regime did not improve oocyte survival and growth. In contrast lectin-aggregated primordial follicles cultured on non-coated wells showed significantly (P < 0.05) improved oocyte survival to 50% and increased median oocyte diameter compared to non-aggregated follicles. In Experiment 3, the effect of KIT ligand (KL) at 0 ng/ml, 10 ng/ml and 100 ng/ml, on lectin-aggregated primordial follicles cultured on non-coated wells was tested. KL at 100 ng/ml significantly (P < 0.05) increased median oocyte diameter compared to non-treated controls but had no effect on oocyte survival. In addition, follicles cultured with 100 ng/ml KL expressed mRNA for AMH, a gene expressed only in granulosa cells of growing follicles. In conclusion, culture of lectin-aggregated primordial follicles supported the long-term survival and growth of oocytes from isolated sheep primordial follicles. Culture of lectin-aggregates with 100 ng/ml KL further increased oocyte growth and induced granulosa cell differentiation.  相似文献   

14.
The effects of chronic somatostatin (SRIH-14) treatment on the pituitary gonadotrophs (FSH and LH cells) and ovaries of female Wistar rats were examined. Females were given 20 microg/100 g b.w. twice per day from the immature (23rd day) till the adult period of life (71st day). The onset of puberty was determined by daily examination for vaginal opening. The peroxidase-antiperoxidase immunocytochemical procedure was used to study the gonadotrophs. Changes in the number per unit area (mm2), cell volume and volume densities of LH- and FSH-immunoreactive cells were evaluated by morphometry and stereology. Ovaries were analysed by simple point counting of follicles and corpora lutea (CL). Follicles were divided by size according to the classification of Gaytán and Osman. The mitotic indexes of granulosa and theca cells in the follicles were estimated at all stages of folliculogenesis. The number, volume and the volume density of FSH- and LH-immunoreactive cells decreased after chronic SRIH-14 treatment, particularly the latter. In the ovary, SRIH-14 treatment decreased the number of healthy follicles at all phases of folliculogenesis, lowered the mitotic indexes of granulosa and theca cells but increased the number of atretic follicles. Healthy CL were fewer in number, while regressive CL were increased. Vaginal opening occurred at a later age in treated females. It can be concluded that chronic SRIH-14 treatment markedly inhibited LH cells and to a lesser extent FSH cells. In the ovary SRIH-14 inhibited folliculogenesis, enhanced atretic processes and lowered proliferative activity of granulosa and theca cells. It also delayed puberty onset.  相似文献   

15.
Oestrus, expected to be followed by a short luteal phase, was induced in post-partum cows by weaning their calves at 35 days after parturition. Ovaries containing the first preovulatory follicles (Type F) formed after parturition were collected 3 h after the onset of oestrus. For comparison, preovulatory follicles (Type C) were collected 3 h after the onset of oestrus in normally cycling cows. The number of granulosa cells was determined and the concentrations of receptors for follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in granulosa cells and for LH in theca cells were measured. Concentrations of oestradiol-17 beta, testosterone, androstenedione and progesterone in follicular fluid were also measured. Type F follicles contained about twice the number of granulosa cells (based on DNA) as did Type C follicles (45.8 +/- 11.3 and 24.5 +/- 3.9 micrograms DNA/follicle, respectively; P less than 0.05) but these cells had fewer receptors for LH (0.13 +/- 0.02 vs 0.29 +/- 0.03 fmol/micrograms DNA; P less than 0.01) and FSH (0.61 +/- 0.08 vs 1.3 +/- 0.29 fmol/micrograms DNA; P less than 0.08) than did those from Type C follicles. Additionally, there were fewer receptors for LH in theca tissue from Type F than from Type C follicles (28.3 +/- 5.2 vs 51.3 +/- 6.1 fmol/follicle; P less than 0.01). Concentrations of oestradiol-17 beta (475.8 +/- 85.6 vs 112.9 +/- 40.0 ng/ml; P less than 0.01) and androstenedione (214.1 +/- 48.7 vs 24.7 +/- 7.7 ng/ml; P less than 0.01) in follicular fluid were higher in Type C than in Type F follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Female Sprague-Dawley rats underwent laporatomy during metestrus at 70 to 75 days of age or remained untreated to study the effects of surgical stress on follicular growth. Groups of rats were killed on each day of a 4-day estrous cycle, serial sections of the ovaries were prepared histologically and the number and size of follicles with one or more complete layers of cuboidal granulosa cells were determined. Since no differences due to surgery were found, the data were pooled by day of the estrous cycle (17 or 18 rats/day of cycle) for characterization and comparison of size distribution of follicles on different days of the estrous cycle. Follicles were classified as atretic or healthy and divided into groups by increments of 20 micron of diameter for graphing. Data were analyzed by analysis of variance and least squares means. Significant differences were found in the distribution of both healthy and atretic follicles among days of the estrous cycle. At least 21 follicles/ovary were recruited from less than 260 micron into greater than 260 micron in diameter between proestrus and estrus, and the follicles for ovulation were selected by diestrus. A greater number of growing follicles of 70 to 100 micron in diameter were present at diestrus. From the disappearance of follicles greater than 260 micron between estrus and proestrus, it appears that atresia is a very rapid process.  相似文献   

17.
Five Dutch-Friesian heifers were injected i.m. with 3000 iu pregnant mares' serum gonadotrophin (PMSG) on day 10 of the oestrous cycle, to study the effects on the number and micromorphological quality of antral follicles (> or = 0.3 mm in diameter). The ovaries were collected 48 h after PMSG injection. As well as the presence of mitotic figures and the absence of pyknotic nuclei in the granulosa, atypical granulosa cells were found in nonatretic follicles. These cells had an oblong nucleus and stained with toluidine blue. They were characterized by their dark cell matrix, and the presence of numerous free ribosomes and intermediate filaments of varying quantity. Atypical granulosa cells were micromorphologically similar to fibroblast-like cells in the theca. Their presence coincided with the occurrence of degenerative changes in the cytoplasm of nearby granulosa cells and they were more frequent in atretic follicles. The presence of atypical granulosa cells in follicles hitherto called nonatretic is therefore probably associated with the onset of follicular atresia. In the PMSG-treated heifers, the mean number of large (> or = 6.0 mm in diameter) antral follicles was greater than in the control group (18.4 +/- 4.0 versus 3.0 +/- 1.0), because of an increase in the number of large nonatretic follicles (11.8 +/- 4.4 versus 0.4 +/- 0.2). After hormone treatment, the mean number of medium-sized (3.0-5.9 mm) nonatretic follicles also increased (6.4 +/- 1.3 versus 1.8 +/- 1.0). PMSG did not change the mean number of nonatretic follicles < 3.0 mm or that of atretic follicles in the different size categories. However, when follicles hitherto called nonatretic, with atypical granulosa cells, were taken together with the group of atretic follicles, PMSG appeared to increase the mean number of large atretic follicles (13.6 +/- 2.4 versus 3.0 +/- 1.0). The mean number of medium-sized and large nonatretic follicles without atypical granulosa cells was markedly increased (3.8 +/- 1.0 versus 0.2 +/- 0.2 and 4.6 +/- 1.9 versus 0.0, respectively). The data demonstrate that PMSG stimulates the formation not only of nonatretic follicles > or = 3.0 mm, but also of atretic follicles > or = 6.0 mm.  相似文献   

18.
Genistein affects reproductive processes in animals. However, the mechanism of its action is not fully elucidated and differs among species. The objectives of the current study were: 1/ to establish an in vitro model of granulosa cell culture for studying the intracellular mechanism of phytoestrogen action in porcine ovary; 2/ to determine an in vitro effect of genistein on basal and FSH-stimulated P(4) and E(2) production by porcine granulosa cell populations (antral, mural, total) isolated from large, preovulatory follicles. Granulosa cells were isolated from large (> or =8 mm), preovulatory follicles and separated into antral and mural cell subpopulations. Cells were allowed to attach for 72 h (37 degrees Celsius, 10% serum, 95% air/5% CO2) and than cultured for next 48 hours with or without serum (0, 5 and 10%), FSH (0, 10 or 100 ng/ml) and genistein (0, 0.5, 5 or 50 microM). Basal P(4) and E(2) production did not differ among antral, mural and unseparated granulosa cells isolated form porcine preovulatory follicles. Only mural cells tended to secrete less P(4) and E(2) than other cell populations. FSH stimulated P(4) production in a dose dependent manner in all cell populations and culture systems. Genistein inhibited in a dose dependent manner basal and FSH-stimulated P(4) production by antral, mural and unseparated granulosa cells. However, genistein did not affect E(2) production by granulosa cells. In addition, viability of porcine granulosa cells was not affected by the pyhytoestrogen except the highest dose of genistein. It appears that genistein may be involved in the regulation of follicular function in pigs. Moreover, unseparated porcine granulosa cells may provide a suitable in vitro model for studying the intracellular mechanism of phytoestrogen action in porcine ovary.  相似文献   

19.
The sustainability and production of collared peccary (Pecari tajacu) has been studied in the last few years; however, further information on its reproduction is necessary for breeding systems success. Understanding folliculogenesis aspects will contribute to effective reproductive biotechniques, which are useful in the preservation and production of wildlife. The aim of this study was-to evaluate the ovarian folliculogenesis in collared peccary. Ovaries from six adult females of collared peccary were obtained through ovariectomy and analyzed. These were fixed in aqueous Bouin's solution and sectioned into 7 microm slices, stained with hematoxilin-eosin and analyzed by light microscopy. The number of pre-antral and antral follicles per ovary was estimated using the Fractionator Method. The follicles, oocytes and oocyte nuclei were measured using an ocular micrometer. Results showed that the length, width, thickness, weight, and the gross anatomy of the right and left ovaries were not significantly different. However, the mean number of corpora lutea was different between the phases of the estrous cycle (p<0.05), with the highest mean in the luteal phase. Primordial follicles were found in the cortex; the oocytes were enveloped by a single layer of flattened follicular cells. In the primary follicles, proliferation of the follicular cells gave rise to cuboidal cells (granulosa cells). The secondary follicle was characterized by two or more concentric layers of cuboidal cells (granulosa), beginning of antrum formation, and the presence of pellucid zone and theca cells. Antral follicles were characterized by a central cavity (antrum), the presence of cumulus oophorus and theca layers (interna and externa). In the right ovary, the values of the primordial and primary follicles were similar, but significantly different from the secondary ones (p<0.05). In the left ovary, significant differences were observed between all follicles in the follicular phase (p<0.05); the mean number of primordial and primary follicles was similar in the luteal phase. The mean number of pre-antral follicles and antral follicles in the follicular phase was higher in the left ovary (p<0.05). The mean number of antral follicles in the luteal phase was similar in both ovaries. We also found significant differences in mean diameter of preantral follicles, oocyte, granulosa layer and oocyte nucleus during the estrous cycle. In the antral follicles a significant difference was observed only in follicular diameter (p<0.05). The predominance of active primordial and primary follicles was found in both phases; otherwise the secondary follicles and antral follicles showed a high degree of degeneration. The results obtained in the present work will strengthen the development of biotechnology programs to improve the productive potential and conservation of the collared peccary.  相似文献   

20.
In contrast to other species, the histology of the equine follicle during ovulation has not been described. Preovulatory follicles were isolated during oestrus at 0, 12, 24, 30, 33, 36 and 39 h (n = 5-6 follicles per time point) after an ovulatory dose of hCG to characterize the cellular and vascular changes associated with ovulation in mares. Pieces of follicle wall were formalin-fixed and processed for light microscopy to evaluate the general follicular morphology and quantify selected parameters. Marked changes were observed in the histology of equine follicles in the hours before ovulation. The thickness of the granulosa cell layer doubled between 0 and 39 h after hCG (77.8 +/- 4.8 versus 158.8 +/- 4.8 microns, respectively; P < 0.01). This expansion was caused primarily by a pronounced accumulation of acid mucosubstances between granulosa cells, which was first detected at 12 h after hCG and peaked at 36-39 h. In contrast, a significant thinning of the theca interna was observed after hCG treatment. Fewer cell layers were present; theca interna cells appeared smaller than before hCG; and the presence of occasional pyknotic cells was noted at 36 and 39 h after hCG. In addition, the theca layers were invaded by numerous eosinophils. No eosinophils were observed in preovulatory follicles isolated between 0 and 24 h after hCG, but the number increased to 14.0 +/- 0.8 and 5.6 +/- 0.3 eosinophils per field (x 400) in theca interna and theca externa, respectively, 39 h after hCG treatment (P < 0.01). Severe oedema, hyperaemia and haemorrhages, and significant increases in the number of blood vessels in theca interna and externa were observed at 33, 36 and 39 h after hCG. This study provides the first in-depth characterization of the sequential cellular and vascular changes that occur in equine follicles before ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号