首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chinese hamster ovary (CHO-K1) cell mutant XRS-6 is defective in rejoining of DNA double-strand breaks and is hypersensitive to X-rays, γ-rays, and bleomycin. Radiation resistance or sensitivity of somatic cell hybrids constructed from the fusion of XRS-6 cells with primary human fibroblasts strongly correlated with the retention of human chromosome 2 isozyme and molecular markers. Discordancies between some chromosome 2 markers and the radiation resistance phenotype in some of the hybrid cells suggested the location of the X-ray repair cross complementing 5 (XRCC5) gene on the p arm of chromosome 2. Introduction of human chromosome 2 by microcell-mediated chromosome transfer into the radiation-sensitive XRS-6 cells resulted in hybrid cells in which the radiation sensitivity was complemented. The chromosome 2p origin of the complementing human DNA in the microcell hybrids was supported by fluorescent in situ hybridization analysis of human metaphases using human DNA amplified from the hybrids by inter-Alu-PCR as chromosome-painting probes. XRCC5 is therefore provisionally assigned to human chromosome 2p.  相似文献   

2.
The Chinese hamster ovary (CHO-K1) cell mutant XRS-6 is defective in rejoining of DNA double-strand breaks and is hypersensitive to X-rays, gamma-rays, and bleomycin. Radiation resistance or sensitivity of somatic cell hybrids constructed from the fusion of XRS-6 cells with primary human fibroblasts strongly correlated with the retention of human chromosome 2 isozyme and molecular markers. Discordancies between some chromosome 2 markers and the radiation resistance phenotype in some of the hybrid cells suggested the location of the X-ray repair cross complementing 5 (XRCC5) gene on the p arm of chromosome 2. Introduction of human chromosome 2 by microcell-mediated chromosome transfer into the radiation-sensitive XRS-6 cells resulted in hybrid cells in which the radiation sensitivity was complemented. The chromosome 2p origin of the complementing human DNA in the microcell hybrids was supported by fluorescent in situ hybridization analysis of human metaphases using human DNA amplified from the hybrids by inter-Alu-PCR as chromosome-painting probes. XRCC5 is therefore provisionally assigned to human chromosome 2p.  相似文献   

3.
Human acid sphingomyelinase (SMPD1) is the lysosomal phosphodiesterase that cleaves sphingomyelin to ceramide and phosphocholine. The deficient activity of SMPD1 is the enzymatic defect in Types A and B Niemann-Pick disease. Previously, the gene encoding human SMPD1 was assigned to chromosome 17 by the differential thermostability of human and hamster SMPD1 in somatic cell hybrids. The recent isolation of the human SMPD1 cDNA (L. E. Quintern, E. H. Schuchman, O. Levran, M. Suchi, K. Ferlinz, H. Reinke, K. Sandhoff, and R. J. Desnick, 1989, EMBO J. 8: 2469-2473) permitted the mapping of this gene by molecular techniques. Oligonucleotide primers were synthesized to PCR amplify the human, but not murine, SMPD1 sequences in man-mouse somatic cell hybrids. In a panel of 15 hybrid cell lines, amplification of the human SMPD1 sequence was 100% concordant with the presence of human chromosome 11. For each of the other human chromosomes there were at least 6 discordant hybrid lines. Further analysis of somatic cell hybrids containing only chromosome 11 or chromosome 11 rearrangements localized the human SMPD1 gene to the region 11p15.1----p15.4. To provide an independent regional gene assignment, in situ hybridization was performed using the radiolabeled human SMPD1 cDNA. In the 58 metaphase cells examined, 34% of the 122 hybridization sites scored were located in the distal end of chromosome 11 with the major peak of hybridization at band 11p15. The absence of any other in situ hybridization site indicated the absence of pseudogenes or homologous sequences elsewhere in the genome. In contrast to the previous provisional localization to chromosome 17, these results assign a single locus for human SMPD1 to 11p15.1----p15.4.  相似文献   

4.
delta-Aminolevulinate synthase (ALAS) catalyzes the first committed step of heme biosynthesis. Previous studies suggested that there were erythroid and nonerythroid ALAS isozymes. We have isolated cDNAs encoding the ubiquitously expressed housekeeping ALAS isozyme and a related, but distinct, erythroid-specific isozyme. Using these different cDNAs, the human ALAS housekeeping gene (ALAS1) and the human erythroid-specific (ALAS2) gene have been localized to chromosomes 3p21 and X, respectively, by somatic cell hybrid and in situ hybridization techniques. The ALAS1 gene was concordant with chromosome 3 in all 26 human fibroblast/murine(RAG) somatic cell hybrid clones analyzed and was discordant with all other chromosomes in at least 6 of 26 clones. The regional localization of ALAS1 to 3p21 was accomplished by in situ hybridization using the 125I-labeled human ALAS1 cDNA. Of the 43 grains observed over chromosome 3, 63% were localized to the region 3p21. The gene encoding ALAS2 was assigned by examination of a DNA panel of 30 somatic cell hybrid lines hybridized with the ALAS2 cDNA. The ALAS2 gene segregated with the human X chromosome in all 30 hybrid cell lines analyzed and was discordant with all other chromosomes in at least 8 of the 30 hybrids. These results confirm the existence of two independent, but related, genes encoding human ALAS. Furthermore, the mapping of the ALAS2 gene to the X chromosome and the observed reduction in ALAS activity in X-linked sideroblastic anemia suggest that this disorder may be due to a mutation in the erythroid-specific gene.  相似文献   

5.
The chromosomal location of the human gene coding for both the beta-subunit of prolyl 4-hydroxylase (P4HB) and the enzyme disulfide isomerase (PDI) was determined using mouse x human somatic cell hybrids and three different methods for identifying either the human P4HB/PDI protein or the respective gene: (1) immunoblotting with species-specific monoclonal antibodies; (2) radioimmunoassay with species-specific polyclonal antibodies; and (3) Southern blotting after cleavage of the DNA with EcoRI, HindIII, or BamHI, followed by hybridization with a mixture of two cDNA probes for human P4HB. All three methods gave identical data, demonstrating complete cosegregation of the human protein or its gene in all 17 cell hybrids tested with human chromosome 17. A cell hybrid lacking an intact chromosome 17 localized the gene to 17p11----qter.  相似文献   

6.
Cytogenetic and molecular genetic analyses of human intraspecific HeLa x fibroblast hybrids have provided evidence for the presence of a tumor-suppressor gene(s) on chromosome 11 of normal cells. In the present study, we have carried out extensive RFLP analysis of various nontumorigenic and tumorigenic hybrids with at least 50 different chromosome 11-specific probes to determine the precise location of this tumor-suppressor gene(s). Two different hybrid systems, (1) microcell hybrids derived by the transfer of a normal chromosome 11 into a tumorigenic HeLa-derived hybrid cell and (2) somatic cell hybrids derived by the fusion of the HeLa (D98OR) cells to a retinoblastoma (Y79) cell line, were particularly informative. The analysis showed that all but one of the nontumorigenic hybrid cell lines contained a complete copy of the normal chromosome 11. This variant hybrid contained a segment of the long arm but had lost the entire short arm of the chromosome. The tumorigenic microcell and somatic cell hybrids had retained the short arm of the chromosome but had lost at least the q13-23 region of the chromosome. Thus, these results showed a perfect correlation between the presence of the long arm of chromosome 11 and the suppression of the tumorigenic phenotype. We conclude therefore that the gene(s) involved in the suppression of the HeLa cell tumors is localized to the long arm (q arm) of chromosome 11.  相似文献   

7.
D S Gerhard  E Lawrence  J Wu  H Chua  N Ma  S Bland  C Jones 《Genomics》1992,13(4):1133-1142
The determination of the physical map of human chromosome 11 will require more clones than are currently available. We have isolated an additional 1001 new markers in a bacteriophage vector from a somatic cell hybrid cell line that contains most of chromosome 11, except the middle of the short arm. These markers were localized to five different regions, 11p15-pter, 11p12-cen, 11q11-q14, 11q14-q23, and 11q23-qter, by a panel of previously characterized somatic cell hybrids. The region 11q11-14 harbors genes that have been shown to be important in breast cancer, B-cell lymphomas, centrocytic lymphomas, asthma, and multiple endocrine neoplasia, type 1 (MEN1). To determine the positions of the recombinant clones located there, we developed a new series of radiation-reduced somatic cell hybrids. These hybrids, together with those previously characterized, allowed us to map the 11q11-q14 markers into 11 separate segregation groups.  相似文献   

8.
The chromosomal locations of the human and murine T11 (CD2) gene have been determined. Using recently cloned cDNA to probe Southern blots of mouse X human and Chinese hamster X mouse somatic cell hybrids, we have localized the human T11 gene to chromosome 1 and the murine T11 gene to chromosome 3. Based on previously determined blocks of homology between human chromosome 1 and mouse chromosome 3, it is suggested that the human T11 gene may lie on the short arm of chromosome 1 proximal to p221. Thus, the T11 gene is not linked to any other genes for T cell markers that have been mapped to date.  相似文献   

9.
Unbalanced interstitial deletions of the p13 region of human chromosome 11 have been associated with congenital hypoplasia or aplasia of the iris, mental retardation, ambiguous genitalia, and predisposition to Wilms tumor of the kidney. Utilizing somatic cell hybrids containing either the normal or abnormal chromosome 11 from a child with Wilms tumor and aniridia, we previously mapped the E7 cell-surface antigen to the 11p1300-to-11p15.1 region. To localize even further the site of this antigen on chromosome arm 11p, we have produced somatic cell hybrids from the fibroblasts of a second child with Wilms tumor and aniridia and a different deletion of 11p [46,XY, del (11)(pter----p14.1::p11.2----qter)]. Furthermore, the normal and deleted chromosome 11 could also be distinguished on the basis of a restriction fragment length polymorphism for the beta-globin gene. Hybrid cells containing the deleted chromosome were not killed in the presence of complement and the E7 monoclonal antibody (which recognizes E7 cell surface antigen), while hybrid cells containing the patient's normal chromosome 11 were killed. Thus, expression of the E7-associated cell-surface antigen can be mapped to the 11p13 region, and it appears to be a potential marker of the chromosome abnormality associated with aniridia-Wilms tumor.  相似文献   

10.
We have used a mouse cell transformant generated by human chromosome-mediated gene transfer (CMGT) to explore the use of cell surface antigens in the identification of fragments of human chromosomes retained by somatic cell hybrids. The transformed line, 21-30b, contained an intact rear-ranged human chromosome, and could be shown by isozyme analysis to contain genetic material from chromosomes 9 and X. By using the transformant as an immunogen in mice, it was also possible to produce antiserum to human-specific surface antigens. Using genetically characterized human X rodent hybrid lines, the genes controlling expression of these antigens could be localized to 11per----11p13, segregating concordantly with surface antigen S3. These conclusions were possible despite the fact that the presence of chromosome 11 in the transformant was not detectable by the presence of chromosome specific isozyme LDH-A or surface antigens W6/34 and 4F2. Finally, the fluorescence-activated cell sorter (FACS) was used to fractionate the transformant cells into antigen positive and negative subpopulations. This resulted in the isolation and characterization of four additional chromosome rearrangements involving interspecies chromosome translocations. This work demonstrates the value of chromosome-specific surface antigens and the FACS in the evaluation of human chromosome fragments retained by interspecies hybrids.  相似文献   

11.
Summary Localization of chromosome breaks in human chromosomes was analyzed in 264 peripheral lymphocyte cultures. Three hundred and sixty-nine chromosome breaks could be exactly localized to a chromosome band or region of the Paris Conference nomenclature. The distribution of breaks in the chromosome regions was found to be nonrandom. Chromosome 3 alone had 23% of the breaks and region 3p2 had 13% of the total breaks. Some other chromosome regions, such as 5p1, 9q1, 14q2, and 16q2 also displayed clustering of breaks. Sex chromosomes had less breaks than expected. Spontaneous chromosome breaks were almost exclusively located in the lightly stained G bands.Supported by grants from the Foundation for Pediatric Research and Research Foundation of Orion Corporation Ltd.  相似文献   

12.
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, we mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q42, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other active genes, non-aldose reductase homologous sequences, or pseudogenes.  相似文献   

13.
Mdm2 promotes genetic instability and transformation independent of p53   总被引:2,自引:0,他引:2  
Mdm2, a regulator of the tumor suppressor p53, is frequently overexpressed in human malignancies. Mdm2 also has unresolved, p53-independent functions that contribute to tumorigenesis. Here, we show that increased Mdm2 expression induced chromosome/chromatid breaks and delayed DNA double-strand break repair in cells lacking p53 but not in cells with a mutant form of Nbs1, a component of the Mre11/Rad50/Nbs1 DNA repair complex. A 31-amino-acid region of Mdm2 was necessary for binding to Nbs1. Mutation of conserved amino acids in the Nbs1 binding domain of Mdm2 inhibited Mdm2-Nbs1 association and prevented Mdm2 from delaying phosphorylation of H2AX and ATM-S/TQ sites, repair of DNA breaks, and resolution of DNA damage foci. Similarly, the mutation of eight amino acids in the Mdm2 binding domain of Nbs1 inhibited Mdm2-Nbs1 interaction and blocked the ability of Mdm2 to delay DNA break repair. Both Nbs1 and ATM, but not the ubiquitin ligase activity of Mdm2, were necessary to inhibit DNA break repair. Only Mdm2 with an intact Nbs1 binding domain was able to increase the frequency of chromosome/chromatid breaks and the transformation efficiency of cells lacking p53. Therefore, the interaction of Mdm2 with Nbs1 inhibited DNA break repair, leading to chromosome instability and subsequent transformation that was independent of p53.  相似文献   

14.
It is currently thought that genetic predisposition to imbalances in dopaminergic transmission may underlie several neurological disorders, including schizophrenia, manic depression, Tourette syndrome, Parkinson disease, Huntington disease, and alcohol abuse. Originally two receptors, D1 and D2, were thought to account for all of the pharmacological actions of dopamine. However, through homology screening three additional genes, D3, D4, and D5, and two pseudogenes closely related to D5 have been characterized. To begin our genomic and evolutionary analyses of the human D5 dopamine receptor gene and its two pseudogenes, we have mapped each of them to their respective chromosomes. By combining in situ hybridization results with sequence analysis of PCR products from microdissected chromosomes, somatic cell hybrids, and radiation hybrids, we have assigned DRD5 (the locus containing the functional human D5 receptor gene) to chromosome 4p16.1, DRD5P1 (the locus containing D5 pseudogene 1) to chromosome 2p11.1-p11.2, and DRD5P2 (the locus of D5 pseudogene 2) to chromosome 1q21.1.  相似文献   

15.
Summary Two members of the human zinc finger Krüppel family, ZNF 12 (KOX 3) and ZNF 26 (KOX 20), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization. The presence of individual human zinc finger genes in mouse-human hybrid DNAs was correlated with the presence of specific human chromosomes or regions of chromosomes in the corresponding cell hybrids. Analysis of such mouse-human hybrid DNAs allowed the assignment of the ZNF 12 (KOX 3) gene to chromosome region 7p. The ZNF 26 (KOX 20) gene segregated with chromosome region 12q13-qter. The zinc finger genes ZNF 12 (KOX 3) and ZNF 26 (KOX 20) were localized by in situ chromosomal hybridization to human chromosome regions 7p22-21 and 12q24.33, respectively. These genes and the previously mapped ZNF 24 (KOX 17) and ZNF 29 (KOX 26) genes, are found near fragile sites.  相似文献   

16.
T Glaser  E Rose  H Morse  D Housman  C Jones 《Genomics》1990,6(1):48-64
The irradiation-fusion technique offers a means to isolate intact subchromosomal fragments of one mammalian species in the genetic background of another. Irradiation-reduced somatic cell hybrids can be used to construct detailed genetic and physical maps of individual chromosome bands and to systematically clone genes responsible for hereditary diseases on the basis of their chromosomal position. To assess this strategy, we constructed a panel of hybrids that selectively retain the portion of human chromosome band 11p13 that includes genes responsible for Wilms tumor, aniridia, genitourinary anomalies, and mental retardation (constituting the WAGR syndrome). A hamster-human hybrid containing the short arm of chromosome 11 as its only human DNA (J1-11) was gamma-irradiated and fused to a Chinese hamster cell line (CHO-K1). We selected secondary hybrid clones that express MIC1 but not MER2, cell-surface antigens encoded by bands 11p13 and 11p15, respectively. These clones were characterized cytogenetically by in situ hybridization with human repetitive DNA and were tested for their retention of 56 DNA, isozyme, and antigen markers whose order on chromosome 11p is known. These cell lines appear to carry single, coherent segments of 11p spanning MIC1, which range in size from 3000 kb to more than 50,000 kb and which are generally stable in the absence of selection. In addition to the selected region of 11p13, two cell lines carry extra fragments of the human centromere and two harbor small, unstable segments of 11p15. As a first step to determine the size and molecular organization of the WAGR gene complex, we analyzed a subset of reduced hybrids by pulsed-field gel electrophoresis. A small group of NotI restriction fragments comprising the WAGR complex was detected in Southern blots with a cloned Alu repetitive probe. One of the cell lines (GH3A) was found to carry a stable approximately 3000-kb segment of 11p13 as its only human DNA. The segment encompasses MIC1, a recurrent translocation breakpoint in acute T-cell leukemia (TCL2), and most or all of the WAGR gene complex, but does not include the close flanking markers D11S16 and delta J. This hybrid forms an ideal source of molecular clones for the developmentally fascinating genes underlying the WAGR syndrome.  相似文献   

17.
The human genes encoding the alpha and beta forms of the retinoic acid receptor are known to be located on chromosomes 17 (band q21.1:RARA) and 3 (band p24:RARB). By in situ hybridization, we have now localized the gene for retinoic acid receptor gamma, RARG, on chromosome 12, band q13. We also mapped the three retinoic acid receptor genes in the mouse, by in situ hybridization, on chromosomes 11, band D (Rar-a); 14, band A (Rar-b); and 15, band F (Rar-g), respectively, and in the rat, using a panel of somatic cell hybrids that segregate rat chromosomes, on chromosomes 10 (RARA), 15 (RARB), and 7 (RARG), respectively. These assignments reveal a retention of tight linkage between RAR and HOX gene clusters. They also establish or confirm and extend the following homologies: (i) between human chromosome 17, mouse chromosome 11, and rat chromosome 10 (RARA); (ii) between human chromosome 3, mouse chromosome 14, and rat chromosome 15 (RARB); and (iii) between human chromosome 12, mouse chromosome 15, and rat chromosome 7 (RARG).  相似文献   

18.
Genomic structure and chromosome mapping of human and mouse RAMP genes   总被引:1,自引:0,他引:1  
The cDNAs for human and murine Receptor Activity Modifying Proteins and for the associated murine Calcitonin Receptor Like Receptor were isolated. The human RAMP1 and RAMP3 genes possess two introns and human RAMP2 possesses three introns. Human RAMP1 was assigned to chromosome 2q36-->q37.1, RAMP2 to 17q12-->q21.1 and RAMP3 to 7p13-->p12. Mouse Ramp1 was assigned to chromosome 1 and Ramp2 and Ramp3 were assigned to chromosome 11.  相似文献   

19.
HOX11L1 is a homeobox gene involved in peripheral nervous system development as confirmed by knockout mice exhibiting megacolon with enteric ganglia, a phenotype associated in human with Intestinal Neuronal Dysplasia (IND). Using FISH and radiation hybrids we have localized HOX11L1 to human chromosome 2p13.1-->p12, in a 14-cR interval between WI-5987 (D2S2088) and GCT1B4 (D2S2497), and confirmed the synteny between mouse 6C3-D1 and human 2p13.1-->p12 chromosomes by mapping an EST cDNA clone corresponding to mouse HOX11L1 (Tlx2).  相似文献   

20.
Rom-1 is a retinal integral membrane protein that, together with the product of the human retinal degeneration slow gene (RDS), defines a photoreceptor-specific protein family. The gene for rom-1 (HGM symbol: ROM1) has been assigned to human chromosome 11 and mouse chromosome 19 by Southern blot analysis of somatic cell hybrid DNAs. ROM1 was regionally sublocalized to human 11p13-11q13 by using three mouse-human somatic cell hybrids; in situ hybridization refined the sublocalization to human 11q13. Analysis of somatic cell hybrids suggested that the most likely localization of ROM1 is in the approximately 2-cM interval between human PGA (human pepsinogen A) and PYGM (muscle glycogen phosphorylase). ROM1 appears to be a new member of a conserved syntenic group whose members include such genes as CD5, CD20, and OSBP (oxysterol-binding protein), on human chromosome 11 and mouse chromosome 19. Localization of the ROM1 gene will permit the examination of its linkage to hereditary retinopathies in man and mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号