首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary DNA restriction endonuclease fragment analysis is used to examine the genetic organization, inheritance and linkage associations of the ribosomal DNA in pea. The substantial variation observed in the length of the intergenic spacer region is shown to segregate in Mendelian fashion involving two independent genetic loci, designated Rrn1 and Rrn2. Linkage between Rrn1 and two marker loci on chromosome 4 establishes the approximate location of this tandem array. Rrn2 shows linkage with a set of isozyme loci which assort independently of other markers on all seven chromosomes. Combining these observations with previous cytological data, we suggest that Rrn2 and the isozyme loci linked to it constitute a new linkage group on chromosome 7. The general absence of spacer length classes common to both rRNA loci in any of the lines we examined indicates that little or no genetic exchange occurs between the nonhomologous nucleolar organizer regions.  相似文献   

2.
Polymorphism in ten enzyme systems (ACO, ACP, AAT, EST, FK, ME, NAG, PRX, 6PGD, and SOD) in Vicia faba L. was analyzed, revealing 13 loci, six of which have not been reported before. Inheritance, genetics, possible location, and linkage analysis were studied in 13 different F2 populations trisomic for four of the six chromosomes (nos. 3, 4, 5, and 6) of the species. Each of these loci exhibited typical Mendelian inheritance except for those involved in the trisomic chromosome. Five loci have been assigned to a specific chromosome: Est-2 to chromosome 3, Fk-2 to chromosome 4, Prx-1 to chromosome 5, and Sod-1 and Pgd-p to chromosome 6. Nag-1 and Pgd-c displayed a linkage of 22.8 cM indicating a clear homology with chromosome 5 of garden pea on which both markers are syntenic.  相似文献   

3.
Summary Segregating allozyme and DNA polymorphisms were used to construct a preliminary linkage map for faba bean. Two F2 populations were analyzed, the most informative of which was segregating for 66 markers. Eleven independently assorting linkage groups were identified in this population. One of the groups contained the 45s ribosomal array and could be assigned to the large metacentric chromosome I on which the nucleolar organizer region is located. This linkage group also contained two isozyme loci, Est and Tpi-p, suggesting that it may share some homology with chromosome 4 of garden pea on which three similar markers are syntenic. Additional aspects of the map and the extent of coverage of the total nuclear genome are discussed.  相似文献   

4.
Fish gene mapping studies have identified several syntenic groups showing conservation over more than 400 million years of vertebrate evolution. In particular, Xiphophorus linkage group IV has been identified as a homolog of human chromosomes 15 and 19. During mammalian evolution, loci coding for glucosephosphate isomerase, peptidase D, muscle creatine kinase, and several DNA repair genes (ERCC1, ERCC2, and XRCC1) appear as a conserved syntenic group on human chromosome 19. When X. clemenciae and X. milleri PstI endonuclease-digested genomic DNA was used in Southern analysis with a human ERCC2 DNA repair gene probe, a strongly cross-hybridizing restriction fragment length polymorphism was observed. Backcrosses to X. clemenciae from X. milleri × X. clemenciae F1 hybrids allowed tests for linkage of the ERCC2-like polymorphism to markers covering a large proportion of the genome. Statistically significant evidence for linkage was found only for ERCC2L1 and CKM (muscle creatine kinase), with a total of 41 parents and 2 recombinants (4.7% recombination, χ2 = 35.37, P < 0.001); no evidence for linkage to GPI and PEPD in linkage group IV was detected. The human chromosome 19 synteny of ERCC2 and CKM thus appears to be conserved in Xiphophorus, while other genes located nearby on human chromosome 19 are in a separate linkage group in this fish. If Xiphophorus gene arrangements prove to be primitive, human chromosome 19 may have arisen from chromosome fusion or translocation events at some point since divergence of mammals and fishes from a common ancestor.  相似文献   

5.
Abnormally large chromosomes which appear to result from the fusion of 2 chromosomes of the normal karyotype have been found in diploids of Dictyostelium discoideum formed by parasexual fusion of haploid strains HU483 (n=7) and HU245 (n=7). These fusion chromosomes appear to be the products of the tandem translocation of most, if not all, of one acrocentric chromosome to the telomere of a second acrocentric. Thus the chromosome number of the diploids is reduced from the normal 2n=14 to 2n=13 with the formation of an abnormally large acrocentric fusion chromosome. Experimental haploidisation of such diploids results in two types of products, those with a normal 7 chromosome karyotype and those with an abnormal 6 chromosome karyotype which contains the fusion chromosome. Genetic analysis of haploid segregants indicates that linkage groups II and VII are involved in this fusion. Phenotypes of recombinant diploids obtained following mitotic crossing-over establishes that linkage group II is proximal to linkage group VII. Cytological examination of the karyotypes of haploid strains bearing the fusion chromosome suggest that chromosome 2 may correspond to linkage group II and chromosome 3 to linkage group VII. Haploid strains bearing the fusion chromosome grow and develop normally so little or no genetic information can have been lost in the fusion event. While the nature of this event is unknown it may have involved aberrant recombinational DNA repair since the parental haploid strain HU483 bears the radB13 DNA repair mutation.  相似文献   

6.
Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.  相似文献   

7.
The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.  相似文献   

8.
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by W. R. McCombie  相似文献   

9.
Application of genetic linkage maps in plant genetics and breeding can be greatly facilitated by integrating the available classical and molecular genetic linkage maps. In rice, Oryza sativa L., the classical linkage map includes about 300 genes which correspond to various important morphological, physiological, biochemical and agronomic characteristics. The molecular maps consist of more than 500 DNA markers which cover most of the genome within relatively short intervals. Little effort has been made to integrate these two genetic maps. In this paper we report preliminary results of an ongoing research project aimed at the complete integration and alignment of the two linkage maps of rice. Six different F2 populations segregating for various phenotypic and RFLP markers were used and a total of 12 morphological and physiological markers (Table 1) were mapped onto our recently constructed molecular map. Six linkage groups (i.e., chr. 1, 3, 7, 9, 11 and 12) on our RFLP map were aligned with the corresponding linkage groups on the classical map, and the previous alignment for chromosome 6 was further confirmed by RFLP mapping of an additional physiological marker on this chromosome. Results from this study, combined with our previous results, indicate that, for most chromosomes in rice, the RFLP map encompasses the classical map. The usefulness of an integrated genetic linkage map for rice genetics and breeding is discussed.Abbreviations RFLP restriction fragment length polymorphism - chr chromosome - cM centiMorgan  相似文献   

10.
Chromosomes of the pea (Pisum sativum L.) were submitted to fluorescent in situ hybridization (FISH) with probes specific for the oligonucleotides (AG)12, (AC)12, (GAA)10, and (GATA)7 and for the genes encoding 25S rRNA, 5S rRNA and the storage proteins legumin A, K and vicilin. A fourth 5S rRNA gene locus, apparently specific for an accession of the cultivar Grüne Victoria, was newly detected. This allowed all seven chromosome pairs to be distinguished by FISH signals of rRNA genes. The same was possible using a combination of oligonucleotide probes or of oligonucleotides and rRNA gene-specific probes in multicolour FISH. Rehybridization with the 5S rRNA gene-specific probe allowed us to assign vicilin genes to the short arm of chromosome 5, the single legumin A locus to the long arm of chromosome 3 and the legumin B-type genes (exemplified by legumin K) to one locus on the short arm of chromosome 6. Correlation of these data with an updated version of the pea genetic map allowed the assignment of most linkage groups to defined chromosomes. It only remains to be established which of linkage groups IV and VII corresponds to the satellited chromosomes 4 or 7, respectively. Received: 13 February 1998; in revised form: 3 April 1998 / Accepted: 7 April 1998  相似文献   

11.
 Random amplified polymorphic DNA (RAPD) markers linked to two morphological markers ( fa and det), three ramosus genes (rms2, rms3 and rms4) and two genes conferring flowering response to photoperiod in pea (sn, dne) were selected by bulk segregant analysis on F2 populations. Two RAPD fragments were cloned and sequenced to generate the two SCAR markers V20 and S2 which are linked to rms3 and dne, respectively. All these genes, except rms2, were previously located on the pea classical linkage map. Rms2 mapped to linkage group IB which contains the afila gene. Precise genetic maps of the regions containing the genes were obtained and compared to the RAPD map generated from the recombinant inbred-lines population of the cross Térèse×K586. This cross was chosen because several mutants were obtained from cultivars Térèse and Torsdag (K586 was derived from Torsdag). This collection of isogenic lines was used for the construction of F2 mapping populations in which polymorphic RAPD markers were already known and mapped. Moreover, the well-known problem in pea of variability in the linkage associations between crosses was avoided. This work contributes to the precise integration between the classical map and the molecular maps existing in pea. Received: 13 March 1998 / Accepted: 29 April 1998  相似文献   

12.
Summary Genetic analyses were conducted on alkaline phosphatases of the endosperm of dry kernels and leaf acid phosphatases in four open pollinated and one inbred line of cultivated rye (Secale cereale L.). A total of seven alkaline phosphatase isozymes were observed occurring at variable frequencies in the different cultivars analyzed. We propose that at least five loci control the alkaline phosphatases of rye endosperm — Alph-1, Alph-2, Alph-3, Alph-4 and Alph-5 — all of which have monomeric behaviour. The leaf acid phosphatases are controlled by one locus and have a dimeric quaternary structure. All loci coding for alkaline phosphatase isozymes showed one active, dominant allele and one null, recessive allele, except for the locus Alph-3 which showed two active, dominant alleles and one null, recessive one. The linkage analyses suggest the existence of two linkage groups for alkaline phosphatases: one of them would contain Alph-2, Alph-4, Alph-5 and the locus/loci coding isozymes 6 and 7. This linkage group is located in the 7RS chromosome arm. The other group would include Alph-1 and Alph-3 loci, being located in the 1RL chromosome arm. Leaf acid phosphatases have been previously located in the 7RL chromosome arm. Our data also support an independent relationship between loci controlling the endosperm alkaline phosphatases and leaf acid phosphatases.  相似文献   

13.
Summary Two different chromosomal locations of major genes controlling extreme resistance to potato virus X (PVX) were found by restriction fragment length polymorphism (RFLP) analysis of two populations segregating for the resistance. The resistance geneRx1 mapped to the distal end of chromosome XII, whereasRx2 was located at an intermediate position on linkage group V in a region where reduced recombination and segregation distortion have also been observed. These linkage anomalies were due to abnormal behaviour of the chromosome contributed by the resistant parent P34. The results presented were obtained using two different strategies for mapping genes of unknown location. One approach was the use of probes revealing polymorphic loci spread throughout the genome and resulted in the mapping ofRx1. The second approach was based on the assumption of possible linkage between the resistance gene and clone-specific DNA fragments introduced from a wild potato species.Rx2 was mapped by adopting this strategy.  相似文献   

14.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

15.
Localized aggressive periodontitis (LAP; previously known as localized juvenile periodontitis) is one of the rapidly progressive periodontal diseases. Certain forms of familial LAP show a simple Mendelian pattern of transmission. However, no gene mutation has been identified to be responsible for the LAP phenotype. As an initial step to identify a gene mutation associated with LAP, we have performed genetic linkage analysis with four multigenerational families exhibiting the LAP phenotype. Affected individuals in the families were identified based on clinical and laboratory criteria in an attempt to define a homogeneous phenotype, since the clinical presentation of LAP may represent a manifestation of a heterogeneous group of diseases. The LAP phenotype is linked to a DNA marker, D1S492, with LOD score 3.48, =0.00. The haplotype analysis of the chromosome interval associated with D1S492 indicates that a LAP locus is located between D1S196 and D1S533 on chromosome 1, covering about 26 million DNA basepairs. We have also examined the DNA sequence of prostaglandin-endoperoxide synthase 2 (PTGS2 or cyclooxygenase 2, COX2) since prostaglandin 2 (PGE2), the product of COX2, is upregulated in LAP patients and COX2 is located between D1S196 and D1S533. No mutation in COX2 was identified in the patients.  相似文献   

16.
Summary Restriction fragment length polymorphisms have been used to determine the chromosomal location of the genes encoding the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) of pea leaf mitochondria. The genes encoding the H subunit of GDC and the genes encoding SHMT both show linkage to the classical group I marker i. In addition, the genes for the P protein of GDC show linkage to the classic group I marker a. The genes for the L and T proteins of GDC are linked to one another and are probably situated on the satellite of chromosome 7. The mRNAs encoding the five polypeptides that make up GDC and SHMT are strongly induced when dark-grown etiolated pea seedlings are placed in the light. Similarly, when mature plants are placed in the dark for 48 h, the levels of both GDC protein and SHMT mRNAs decline dramatically and then are induced strongly when these plants are returned to the light. During both treatments a similar pattern of mRNA induction is observed, with the mRNA encoding the P protein of GDC being the most rapidly induced and the mRNA for the H protein the slowest. Whereas during the greening of etiolated seedlings the polypeptides of GDC and SHMT show patterns of accumulation similar to those of the corresponding mRNAs, very little change in the level of the polypeptides is seen when mature plants are placed in the dark and then re-exposed to the light.  相似文献   

17.
Summary Three isoenzyme systems (amylase, esterase and glutamate oxaloacetate transaminase) were examined in seeds of pea (Pisum sativum L.) and shown to give clear variation in their band patterns on gel electrophoresis between different lines. The inheritance of these isoenzyme systems, and the location of their genes on the pea genome was investigated. Reciprocal crosses were made between lines, F2 seeds were analysed for segregation in the band patterns of the isoenzymes, and F2 plants were investigated to find linkage between the genes for these isoenzymes and genes for selected morphological markers. The results obtained showed that each of the investigated isoenzyme systems is genetically controlled by co-dominant alleles at a single locus. The gene for amylase was found to be on chromosome 2, linked to the loci k and wb (wb ... 9 ... k ... 25 ... Amy). The gene for esterase was found to be linked with the gene Br (chromosome 4) but the exact location is uncertain because of the lack of the morphological markers involved in the cross. The gene for glutamate oxaloacetate transaminase was found to be on chromosome 1 and linked with the loci a and d (a... 24... Got... 41 ... d).  相似文献   

18.
An F2 population of pea (Pisum sativum L.) consisting of 174 plants was analysed by restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) techniques. Ascochyta pisi race C resistance, plant height, flowering earliness and number of nodes were measured in order to map the genes responsible for their variation. We have constructed a partial linkage map including 3 morphological character genes, 4 disease resistance genes, 56 RFLP loci, 4 microsatellite loci and 2 RAPD loci. Molecular markers linked to each resistance gene were found: Fusarium wilt (6 cM from Fw), powdery mildew (11 cM from er) and pea common Mosaic virus (15 cM from mo). QTLs (quantitative traits loci) for Ascochyta pisi race C resistance were mapped, with most of the variation explained by only three chromosomal regions. The QTL with the largest effect, on chromosome 4, was also mapped using a qualitative, Mendelian approach. Another QTL displayed a transgressive segregation, i.e. the parental line that was susceptible to Ascochyta blight had a resistance allele at this QTL. Analysis of correlations between developmental traits in terms of QTL effects and positions suggested a common genetic control of the number of nodes and earliness, and a loose relationship between these traits and height.  相似文献   

19.
Genetic analysis was performed to finely map and assess the mode of inheritance of two unlinked nuclear genes Scs1 and Scs2 involved in incompatibility of the nuclear genome of the cultivated pea Pisum sativum subsp. sativum with the cytoplasm of the wild pea of the subspecies P. sativum subsp. elatius, accession VIR320. Based on the segregation of genotypes in the progeny of the test-crosses, we concluded that if the cytoplasm was inherited from the wild pea VIR320, the Scs1 allele from the cultivated pea was gametophyte lethal and sporophyte recessive lethal. The Scs2 allele from the cultivated pea reduced male gametophyte viability. In homozygote, Scs2 from cultivated parent brought about nuclear–cytoplasmic conflict manifested as chlorophyll deficiency, reduction of blade organs, and low pollen fertility of about 20%. In heterozygote, Scs1 and Scs2 genes reduced pollen fertility by ca 50 and 30%, respectively. The Scs1 and Scs2 genes involved in nuclear–cytoplasmic incompatibility were genetically mapped. The distance between the markers bordering Scs1 comprised about 2.5 cM on linkage group III. The map distance between the bordering markers in the neighborhood of Scs2 varied substantially from cross to cross in the range of 2.0–15.1 cM on linkage group V.  相似文献   

20.
Summary Genetic control of the major zein polypeptides in maize (Zea mays L.) was studied by isoelectric focusing (IEF) in agarose. Linkage relationships were determined by making a number of crosses, then determining the expression of zein polypeptides in backcross seeds. Chromosome linkages were determined by using the markers sugary-1 (for chromosome 4), yellow-8, and a waxy 7–9 translocation (for chromosome 7). Nine zeins were in one linkage group on chromosome 4, six in another linkage group on chromosome 4, and four zeins were in one linkage group on chromosome 7. Some IEF single bands consisted of at least two polypeptides, which were detected by subsequent sodium dodecyl sulfate polyacrylamide gel electrophoresis, by aberrant ratios in backcrosses, or by differing recombination percentages. One zein occurred only in homozygous sugary-1 seeds. Three sets of closely-linked zeins were noted that occurred together almost exclusively in certain inbreds.Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the Illinois Agricultural Experiment Station, Department of Agronomy, University of Illinois, Urbana, USAMention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号