首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L Chen  S Xu  L Liu  X Wen  Y Xu  J Chen  J Teng 《Cell death & disease》2014,5(5):e1219
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress and leads to activation of the unfolded protein response, which reduces the stress and promotes cell survival at the early stage of stress, or triggers cell death and apoptosis when homeostasis is not restored under prolonged ER stress. Here, we report that Cab45S, a member of the CREC family, inhibits ER stress-induced apoptosis. Depletion of Cab45S increases inositol-requiring kinase 1 (IRE1) activity, thus producing more spliced forms of X-box-binding protein 1 mRNA at the early stage of stress and leads to phosphorylation of c-Jun N-terminal kinase, which finally induces apoptosis. Furthermore, we find that Cab45S specifically interacts with 78-kDa glucose-regulated protein/immunoglobulin heavy chain binding protein (GRP78/BiP) on its nucleotide-binding domain. Cab45S enhances GRP78/BiP protein level and stabilizes the interaction of GRP78/BiP with IRE1 to inhibit ER stress-induced IRE1 activation and apoptosis. Together, Cab45S, a novel regulator of GRP78/BiP, suppresses ER stress-induced IRE1 activation and apoptosis by binding to and elevating GRP78/BiP, and has a role in the inhibition of ER stress-induced apoptosis.  相似文献   

2.
3.
Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction.  相似文献   

4.

Aims

Both advanced glycation end products (AGEs) and endoplasmic reticulum (ER) stress play important roles in the development of various diseases. This study aimed to clarify the consequence of AGE-induced ER stress and its underlying mechanisms in human umbilical venous endothelial cells (HUVECs).

Main methods

AGE-induced ER stress was assessed by the increased expression and activation of the ER stress marker proteins GRP78, IRE1α and JNK, which were detected using Western blot. NF-κB translocation was revealed using Western blot and immunofluorescent staining in IRE1α-knockdown HUVECs. The mechanism of AGE-induced ER stress was also explored by inhibiting the effect of reactive oxygen species (ROS) using NADPH oxidase 4 (Nox4) siRNA and the antioxidant reduced glutathione (GSH). The cellular ROS level was measured using flow cytometry.

Key findings

AGEs time- and dose-dependently enhanced the expression of GRP78 and increased the phosphorylation of IRE1α and its downstream signal JNK in HUVECs. siRNA-induced IRE1α down-regulation suppressed AGE-induced NF-κB p65 nuclear translocation. Inhibiting the ROS production using Nox4 siRNA or antagonizing ROS using GSH reduced cellular ROS level and attenuated AGE-induced GRP78 expression and IRE1α and JNK activation.

Significance

This study confirms that AGE-induced ER stress in HUVECs focuses on the ER stress-enhanced inflammatory response through JNK and NF-κB activation. It further reveals the involvement of ROS in the AGE-induced ER stress mechanism.  相似文献   

5.
6.
Missense mutations in the human presenilin-1 (PS1) gene, which is found on chromosome 14, cause early-onset familial Alzheimer's disease (FAD). FAD-linked PS1 variants alter proteolytic processing of the amyloid precursor protein and cause an increase in vulnerability to apoptosis induced by various cell stresses. However, the mechanisms responsible for these phenomena are not clear. Here we report that mutations in PS1 affect the unfolded-protein response (UPR), which responds to the increased amount of unfolded proteins that accumulate in the endoplasmic reticulum (ER) under conditions that cause ER stress. PS1 mutations also lead to decreased expression of GRP78/Bip, a molecular chaperone, present in the ER, that can enable protein folding. Interestingly, GRP78 levels are reduced in the brains of Alzheimer's disease patients. The downregulation of UPR signalling by PS1 mutations is caused by disturbed function of IRE1, which is the proximal sensor of conditions in the ER lumen. Overexpression of GRP78 in neuroblastoma cells bearing PS1 mutants almost completely restores resistance to ER stress to the level of cells expressing wild-type PS1. These results show that mutations in PS1 may increase vulnerability to ER stress by altering the UPR signalling pathway.  相似文献   

7.
Repetitive transcranial magnetic stimulation (rTMS) is an emerging therapy for the treatment of psychiatric disorders. However, the mechanisms underlying the therapeutic effects of rTMS are still unclear, limiting its optimisation. Lasting effects suggest changes in disease-related genes, so we conducted gene chip and qRT-PCR analyses of genes associated with psychiatric diseases in the mouse brain at various times following 1, 20, 30 or 40 days of rTMS. Many genes were differentially expressed in the rTMS-treated mouse brain compared to sham controls, including genes encoding neurotransmitter transporters (upregulation of EAAT4, GLAST, GLT-1, GAT2, GAT4, GLYT1 and GLYT2), and endoplasmic reticulum (ER)-stress proteins (downregulation of IRE1α, IRE1β, and XBP1, upregulation of ATF6 and GRP78/Bip). Expression changes in many of these genes were also observed 10 days after the last rTMS treatment. In PC12 cells, rTMS upregulated GRP78/Bip mRNA and enhanced resistance against H2O2 stress. These results suggest that rTMS differentially modulates multiple genes associated with psychiatric and neurodegenerative disorders. Sustained changes in the expression of these genes may underlie the therapeutic efficacy of chronic rTMS.  相似文献   

8.
9.
Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown. In this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp78 gene expression depending on the ATP-binding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of active-state chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.  相似文献   

10.
Murine regenerating (mReg) genes have been implicated in preserving islet cell biology. Expanding on our previous work showing that overexpression of mReg2 protects MIN6 insulinoma cells against streptozotocin-induced apoptosis, we now demonstrate that mReg2 induces glucose-regulated peptide 78 (GRP78) expression via the Akt–mTORC1 axis and protects MIN6 cells against ER stress induced by thapsigargin and glucolipotoxicity. Activation of mTORC1 activity results from both mReg2-induced increased mTOR phosphorylation as well as increased expression of Raptor and GβL. Inhibition of Akt and mTORC1 blunted the ability of mReg2 to induce GRP78 and attenuate unfolded protein response (UPR). Knockdown of GRP78 sensitized the cells overexpressing mReg2 to UPR without affecting its ability to activate Akt–mTORC1 signaling. Induced expression of mReg2 may protect insulin producing cells from ER stress in diabetes.  相似文献   

11.
12.
CYP2E1 causes oxidative stress mediated cell death; the latter is one mechanism for endoplasmic reticulum (ER) stress in the cell. Unfolded proteins accumulate during ER stress and ER resident proteins GRP78 and GRP94 protect cells against ER dysfunction. We examined the possible role of GRP78 and GRP94 as protective factors against CYP2E1-mediated toxicity in HepG2 cells expressing CYP2E1 (E47 cells). E47 cells expressed high levels of CYP2E1 protein and catalytic activity which is associated with increased ROS generation, lipid peroxidation and the elevated presence of ubiquinated and aggregated proteins as compared to control HepG2 C34 cells which do not express CYP2E1. The mRNA and protein expression of GRP78 and GRP94 were decreased in E47 cells compared to the C34 cells, which may explain the accumulation of ubiquinated and aggregated proteins. Expression of these GRP proteins was induced with the ER stress agent thapsigargin in E47 cells, and E47 cells were more resistant to the toxicity caused by thapsigargin and calcimycin, possibly due to this upregulation and also because of the high expression of GSH and antioxidant enzymes in E47 cells. Antioxidants such as trolox and N-acetylcysteine increased GRP78 and GRP94 levels in the E47 cells, suggesting that CYP2E1- derived oxidant stress was responsible for down regulation of these GRPs in the E47 cells. Thapsigargin mediated toxicity was decreased in cells treated with the antioxidant trolox indicating a role for oxidative stress in this toxicity. These results suggest that CYP2E1 mediated oxidative stress downregulates the expression of GRP proteins in HepG2 cells and oxidative stress is an important mechanism in causing ER dysfunction in these cells.  相似文献   

13.
14.
Recent studies have indicated that the development of acute and chronic kidney disease including renal fibrosis is associated with endoplasmic reticulum (ER) stress. S100 calcium-binding protein 16 (S100A16) as a novel member of the S100 family is involved in kidney disease; however, few studies have examined fibrotic kidneys for a relationship between S100A16 and ER stress. In our previous study, we identified GRP78 as a protein partner of S100A16 in HK-2 cells. Here, we confirmed a physical interaction between GRP78 and S100A16 in HK-2 cells and a markedly increased expression of GRP78 in the kidneys of unilateral ureteral occlusion mice. S100A16 overexpression in HK-2 cells by infection with Lenti-S100A16 also induced upregulation of ER stress markers, including GRP78, p-IRE1α, and XBP1s. Immunofluorescence staining demonstrated that the interaction between S100A16 and GRP78 predominantly occurred in the ER of control HK-2 cells. By contrast, HK-2 cells overexpressing S100A16 showed colocalization of S100A16 and GRP78 mainly in the cytoplasm. Pretreatment with BAPTA-AM, a calcium chelator, blunted the upregulation of renal fibrosis genes and ER stress markers induced by S100A16 overexpression in HK-2 cells and suppressed the cytoplasmic colocalization of GRP78 and S100A16. Co-immunoprecipitation studies suggested a competitive binding between S100A16 and IRE1α with GRP78 in HK-2 cells. Taken together, our findings demonstrate a significant increase in S100A16 expression in the cytoplasm following renal injury. GRP78 then moves into the cytoplasm and binds with S100A16 to promote the release of IRE1α. The subsequent phosphorylation of IRE1α then leads to XBP1 splicing that activates ER stress.Subject terms: Stress signalling, Experimental models of disease  相似文献   

15.
16.
Most biotherapeutic drugs are recombinant monoclonal antibodies which are mostly produced in monoclonal cell lines derived from Chinese hamster ovary (CHO) cells. Various clones expressing a monoclonal recombinant antibody were analyzed and a correlation of the antibody concentration and the relative mRNA level of calreticulin (CALR), glucose‐regulated protein 78 and 94 kDa (GRP78, GRP94) and spliced X‐box binding protein 1 (XPB1) was observed. By means of these results we were motivated to establish a novel selection system based on endoplasmic reticulum (ER) stress, which allows the rapid identification and isolation of high‐expressing clones out of a pool mainly consisting of low‐ and medium‐producing cells. Several ER stress responsive elements were tested with the aid of a recombinase mediated cassette exchange (RMCE) procedure. Very surprisingly, only GRP78 reporter constructs were strongly stimulated upon antibody expression. Furthermore we found that GRP78 reporter constructs are very suitable to reflect the level of antibody expression (IgG) in recombinant CHO cells. Based on these results, it is concluded, that the novel ER stress based selection system developed during this study is suitable to identify and isolate clones with a high level of antibody expression. Biotechnol. Bioeng. 2012; 109: 2599–2611. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
Recent reports have shown that the endoplasmic reticulum (ER) stress is relevant to the pathogenesis of Alzheimer disease. Following the amyloid cascade hypothesis, we therefore attempted to investigate the effects of ER stress on amyloid-beta peptide (Abeta) generation. In this study, we found that ER stress altered the localization of amyloid precursor protein (APP) from late compartments to early compartments of the secretory pathway, and decreased the level of Abeta 40 and Abeta 42 release by beta- and gamma-cutting. Transient transfection with BiP/GRP78 also caused a shift of APP and a reduction in Abeta secretion. It was revealed that the ER stress response facilitated binding of BiP/GRP78 to APP, thereby causing it to be retained in the early compartments apart from a location suitable for the cleavages of Abeta. These findings suggest that induction of BiP/GRP78 during ER stress may be one of the regulatory mechanisms of Abeta generation.  相似文献   

19.
20.
Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported that thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed that 1-methyl-4-phenylpyridinium ion (MPP+) induced ER stress by activating glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in PC12 cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of the above molecules induced by MPP+. In contrast, overexpression of Trx-1 attenuated the ER stress and repressed the expression of the above molecules induced by MPP+. More importantly, the overexpression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of these molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of endoplasmic reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation of GRP78, IRE1α, TRAF2, JNK, caspase-12, and CHOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号