首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the appearance of the thymus primordia of main representatives of the vertebrate evolution, observed these anlages in different places of the branchial region and followed their gradual reduction in phyletic line. On the assumption that the thymus potency has been encoded in evolution, we studied the human thymus ontogeny and described the entodermal thymus primordia not only in the 3rd but also in the 2nd and 4th pouch. We describe a very important contribution of the ectodermal canaliculus, projecting from the 3rd cleft, as well as the participation of the hypobranchial neural placode to the definitive thymus formation. Even though the entodermal thymus primordium in the 2nd pouch has reached an advanced stage, the thymus cannot complete its development because the ento-ectodermal relation is missing. In addition to this dysgenesis, we describe thymic involution in a later fetal period in connection with some malformations and confirm the close relation between the central immune organ and the neuro-endocrine system.  相似文献   

2.
Compartmental structures are the basis of a number of developing systems, including parts of the vertebrate head. One of the characteristics of a series of compartments is that mixing between cells in adjacent units is restricted. This is a consequence of differential chemoaffinity between neighbouring cells in adjacent compartments. We set out to determine whether mesenchymal cells in the branchial arches and their precursors show cell-mixing properties consistent with a compartmental organisation. In chimaeric avian embryos we found no evidence of preferential association or segregation of neural crest cells when surrounded by cells derived from a different axial level. In reassociation assays using mesenchymal cells isolated from chick branchial arches at stage 18, cells reformed into clusters without exhibiting a preferential affinity for cells derived from the same branchial arch. We find no evidence for differential chemoaffinity in vivo or in vitro between mesenchymal cells in different branchial arches. Our findings suggest that branchial arch mesenchyme is not organised into a series of compartments.  相似文献   

3.
手掌分区与指掌侧总神经和指掌侧总动脉   总被引:1,自引:1,他引:0       下载免费PDF全文
目的:为研究手掌血管、神经损伤修复重建提供解剖学基础。方法:手掌借5条横平行线和4条纵平行线分为20区,解剖并观察指掌侧总神经和指掌侧总动脉在手掌的分布及其伴行关系。结果:第一、二指掌侧神经起始处位于7区外上象限,第三指掌侧总神经、小指尺掌侧神经起始处位于4区内下象限。第一、二、三指掌侧总动脉起始处位于7、8区近C线处。小指尺掌侧动脉起始处位于8区内下象限。第一、二指掌侧总神经在7区被掌浅弓骑跨,分弓上、下两段。弓上、下段,分别在13、14区D线处发出指掌侧固有神经。小指尺掌侧神经、第三指掌侧总神经起始处位于同名动脉的近侧,其行程在9、15、20区位于同名动脉的尺侧。第一、二指掌侧总动脉分别在18、19区距E线0.8-1.0cm处发出相应的指掌侧固有动脉。第一、二、三指掌侧总神经及其发出的指掌侧固有神经与同名的指掌侧总动脉的伴行关系有四型:H1、H2、O、V型。结论:指掌侧总神经与指掌侧总动脉在手掌的一定区域内有按规律分布的特点,有助于手掌损伤离断手术修复过程中指掌侧总神经与指掌侧总动脉的寻找和吻合,以及手掌神经阻滞麻醉的精确定位。  相似文献   

4.
BACKGROUND: The triazole derivative, triadimefon (FON), induces branchial arch abnormalities in post-implantation rat embryos cultured in vitro, and cranio-facial malformations in mouse fetuses. Ectopic maxillary cartilage has been also described as a typical FON-related malformation. This work studies the morphogenesis of the ectopic cartilage in rat embryos and fetuses exposed in vivo to FON during the early postimplantation period. METHODS: Pregnant rats were treated with 0, 250, and 500 mg/kg FON on Day 9.5 of pregnancy (D9.5) and sacrificed at term (D20), during the early fetal period (D17) or at different embryogenetic periods (D10, D11, D12). The skeleton was examined after stain of bone and cartilage or of cartilage alone respectively at term or at D17. The neural crest cell (NCC) migration and compaction was investigated at D10 and D11 and the cranial nerve organization described at D12. RESULTS: Triadimefon is teratogenic in rats under the chosen experimental conditions. The malformations were at the level of the cranio-facial and axial skeleton at term and of the hindbrain nerves in embryos. A NCC abnormal migration and compaction was observed at the level of the first branchial arch: in FON-exposed embryos NCC were detected at the level of both maxillary and mandibular processes, whereas control embryos showed the immunostained tissue only at the level of the mandibular bud. CONCLUSIONS: The pathogenic pathway, proposed to explain the ectopic cartilage, is the displacement of part of the NCC-derived tissues at the maxillary region of the first branchial arch.  相似文献   

5.
Branchial arch development involves dynamic interactions between neural crest cells as well as ectodermal, endodermal and mesodermal cell populations. Despite their importance and evolutionary conservation, the intercellular interactions guiding the early development of the branchial arches are still poorly understood. We have here studied fibroblast growth factor (FGF) signalling in early pharyngeal development. In mice homozygous for a hypomorphic allele of Fgfr1, neural crest cells migrating from the hindbrain mostly fail to enter the second branchial arch. This defect is non-cell-autonomous suggesting that Fgfr1 provides a permissive environment for neural crest cell migration. Here we demonstrate localized down-regulation of the expression of the FGF responsive gene, Sprouty1 in the epithelium covering the presumptive second branchial arch of hypomorphic Fgfr1 mutants. This appears to result in a failure to establish an ectodermal signalling center expressing Fgf3 and Fgf15. We also studied differentiation of the ectoderm in the second branchial arch region. Development of the geniculate placode as well as the VIIth cranial ganglion is affected in Fgfr1 hypomorphs. Our results suggest that Fgfr1 is important for localized signalling in the pharyngeal ectoderm and consequently for normal tissue interactions in the developing second branchial arch.  相似文献   

6.
Platelet-derived growth factors (PDGF) regulate cell proliferation, survival, morphology, and migration, as well as deposition and turnover of the extracellular matrix. Important roles for the A form of PDGF (PDGF-A) during connective tissue morphogenesis have been highlighted by the murine Patch mutation, which includes a deletion of the alpha subunit of the PDGF receptor. Homozygous (Ph/Ph) embryos exhibit multiple connective tissue defects including cleft face (involving the first branchial arch and frontonasal processes), incomplete heart septation, and heart valve abnormalities before they die in utero. Analyses of the cell biology underlying the defects in Ph/Ph embryos have revealed a deficit in a matrix metalloproteinase (MMP-2) and one of its activators (MT-MMP) that are likely to be involved in cell migration and tissue remodeling, two processes necessary for normal cardiac and craniofacial development. Morphogenesis of these structures requires infiltration of ectomesenchymal precursors and their subsequent deposition and remodeling of extracellular matrix components. First branchial arch and heart tissue from E10.5 embryos were examined by gelatin zymography and RT-PCR in order to characterize the expression of MMPs in these tissues. Of the MMPs examined, only MMP-2 and one of its activators, MT-MMP, were expressed in the first arch and heart at this stage of development. Tissues from Ph/Ph embryos exhibited a significant decrease in both MMP-2 and MT-MMP compared to tissues from normal embryos of the same developmental stage. In order to assess whether this decrease affects the motile activity of mesenchymal cells, cell migration from Ph/Ph branchial arch explants was compared to migration from normal arch tissue and found to be significantly less. In addition, the migratory ability of branchial arch cells from normal explants could be reduced in a similar manner using a specific MMP inhibitor. Although it is still unclear whether the MMP-2 reduction is a direct result of the absence of response of Ph/Ph cells to PDGF-A treatment of normal branchial arch cells in vitro with recombinant PDGF-AA significantly upregulated MMP-2 protein. Together, these results suggest that PDGF-A regulates MMP-2 expression and activation during normal development and that faulty proteinase expression may be at least partially responsible for the developmental defects exhibited by Ph/Ph embryos.  相似文献   

7.
During development, cranial motor neurons extend their axons along distinct pathways into the periphery. For example, branchiomotor axons extend dorsally to leave the hindbrain via large dorsal exit points. They then grow in association with sensory ganglia, to their targets, the muscles of the branchial arches. We have investigated the possibility that pathway tissues might secrete diffusible chemorepellents or chemoattractants that guide cranial motor axons, using co-cultures in collagen gels. We found that explants of dorsal neural tube or hindbrain roof plate chemorepelled cranial motor axons, while explants of cranial sensory ganglia were weakly chemoattractive. Explants of branchial arch mesenchyme were strongly growth-promoting and chemoattractive for cranial motor axons. Enhanced and oriented axon outgrowth was also elicited by beads loaded with Hepatocyte Growth Factor (HGF); antibodies to this protein largely blocked the outgrowth and orientation effects of the branchial arch on motor axons. HGF was expressed in the branchial arches, whilst Met, which encodes an HGF receptor, was expressed by subpopulations of cranial motor neurons. Mice with targetted disruptions of HGF or Met showed defects in the navigation of hypoglossal motor axons into the branchial region. Branchial arch tissue may thus act as a target-derived factor that guides motor axons during development. This influence is likely to be mediated partly by Hepatocyte Growth Factor, although a component of branchial arch-mediated growth promotion and chemoattraction was not blocked by anti-HGF antibodies.  相似文献   

8.
The homology of branchial arch segments in salamanders has been a matter of controversy since the last century. Many investigators term the most medial paired elements of salamander branchial arches “ceratobranchials” and the next distal paired elements “epibranchials.” This suggests that the first two segmental elements of the salamander branchial arch are not homologous with elements occupying the same position in ray-finned fishes, Latimeria, “rhipidistians,” and lungfishes, in which these bones are called hypobranchials and ceratobranchials, respectively. Three lines of evidence suggest that it is more parsimonious to interpret urodele branchial arch segments as being homologous with those of other vertebrate clades?(1) comparative osteology, (2) comparative myology, and (3) the discovery of cartilaginous structures forming a third segmental unit that we interpret as atavistic epibranchials of the branchial arch in one population of the salamander Notophthalmus viridescens. These structures possess all the defining attributes of atavisms, and illustrate the special role that atavistic features play in resolving questions of homology recognition.  相似文献   

9.
10.
In Riptortus clavatus (Thunberg) (Heteroptera : Alydidae), growth and development of cuticular structures were compared between normal antennae and the antennae whose distal (4th) segment had been amputated during the 1st instar. The total length of the remaining 3 segments was 51% of the normal antenna. From the 2nd ecdysis onwards, the 2nd and 3rd segments grew excessively, and after adult emergence, the length of the operated antennae was 84% that of a normal antenna, although a typical 4th segment, separated from the 3rd segment by an intersegmental membrane, never developed. On the new distal (3rd) segment of operated antennae, long fine sensory hairs and grooved pegs, which characterize the normal distal (4th) segment, began to appear at the 2nd ecdysis, and successively increased in number between molts. Thus, when the distal segment was removed, the remaining segments tended to gradually compensate for the loss, both in terms of length and cuticular structures.  相似文献   

11.
Pathways of avian neural crest cell migration in the developing gut   总被引:4,自引:0,他引:4  
The NC-1 and E/C8 monoclonal antibodies recognize a similar population of neural crest cells as they migrate from vagal levels of the neural tube and colonize the branchial arch region of 2- to 3-day-old chicken embryos. Some of these immunoreactive cells then appear to enter the gut mesenchyme on the third day of incubation just caudal to the third branchial cleft. After entering the gut, these cells migrate in a rostral-caudal direction, using primarily the superficial splanchnic mesodermal epithelium of the gut as a substratum. The antigen-positive cells remain preferentially associated with the splanchnopleure. Few antigenic cells enter the mesenchyme surrounding the endoderm at anterior levels whereas they are found throughout the mesenchyme when nearing the umbilicus. At postumbilical levels, immunoreactive cells are distributed on both sides of the differentiating muscle layer but not within it. Although fibronectin immunoreactivity can be found throughout the wall of the gut, there is no apparent relationship between the distribution of fibronectin and the location of the immunoreactive cells. These results suggest that a mechanism more complex than a mere interaction with fibronectin may account for migration of crest-derived cells in the gut.  相似文献   

12.
K S Khera 《Teratology》1992,45(6):611-627
Histologic changes in extraembryonic and embryonic tissues induced by 3 or 6 micrograms 2,3,7,8-tetrachlorodibenzo-p-dioxin/kg (TCDD) or 80 micrograms 2,3,4,7,8-pentachlorodibenzofuran/kg/day (4-PeCDF) were studied 24 h after the last of four daily doses administered orally to C57BL/6N mice on days 10-13 of pregnancy. Both test compounds ruptured (1) the embryo-maternal vascular barrier in the labyrinth, which resulted in hemorrhage of embryonic blood into the maternal circulation, (2) the visceral yolk sac membrane with the embryonic blood from the vitelline vessels escaping into the uterine, exocelomic and amniotic cavities, and (3) the maternal vascular spaces of the placental periphery resulting in hemorrhages into the interconceptal space. The role of the hemorrhagic lesions in the induction of cleft palate and hydronephrosis by the two compounds remains to be investigated. The presence of embryonic nucleated erythroblasts that hemorrhaged into the maternal lacunar network allowed the identification of maternal venous channels in the placenta. It revealed that (1) the labyrinth could be tentatively divided into two caudocranially oriented zones, an arterial and a venous zone; (2) the maternal blood in the labyrinthine lacunae circulated from the arterial to the venous zone, somewhat parallel to the uterine axis; and (3) the largest maternal vessels in the center of the placenta hitherto named the "central maternal artery," was in fact, venous.  相似文献   

13.
BACKGROUND: All-trans-retinoic acid (RA) can produce branchial arch abnormalities in postimplantation rodent embryos cultured in vitro. Platelet-derived growth factor C (PDGF-C) was recently identified as a member of the PDGF ligand family. Many members of the PDGF family are essential for branchial arch morphogenesis and can be regulated by RA. The roles of PDGF-C in branchial arch malformations induced by RA and possible mechanisms were investigated. METHODS: In whole embryo culture (WEC), mouse embryos were exposed to RA at 0, 0.1, 0.4, 1.0, or 10.0 microM, PDGF-C at 25, 50, or 75 ng/mL, or PDGF-C at 25, 50, or 75 ng/mL containing 0.4 microM RA. After 48 h of culture, mouse embryos were examined for dysmorphogenesis, and whole-mount immunohistochemistry was applied to PDGF-C. In explant cultures, explants were exposed to the same doses of RA and PDGF-C as WEC. Semiquantitative RT-PCR, zymography, and reverse zymography were used to evaluate the expressions and activities of matrix metalloproteinase (MMP)-2, MMP-14, and tissue inhibitor of metalloproteinase (TIMP)-2. RESULTS: PDGF-C was reduced by RA, and exogenous PDGF-C rescued the branchial arch malformations induced by RA. Moreover, PDGF-C prevented RA-induced inhibition of the migratory ability of mesenchymal cells in the first branchial arch, by regulating the expressions of MMP-2, MMP-14, and TIPM-2. CONCLUSIONS: Our results suggest that RA exposure reduces the expression of PDGF-C. The branchial arch malformations resulting from fetal RA exposure are caused at least partially by loss of PDGF-C and subsequent misregulations of the expressions of MMP-2, MMP-14, and TIMP-2.  相似文献   

14.
BACKGROUND: Triadimefon is an antifungal derived from triazole. In in vitro whole-rodent embryo cultures, triazole-derivatives showed specific teratogenic effects at the branchial apparatus. The aim of the present work was to test in vivo triadimefon (FON), in order to verify a relationship between triazole exposure, embryonic abnormalities, and/or fetal malformations. METHODS: Pregnant CD-1 mice were treated with 0-300 mg/kg FON by gavage on day 8 post coitum (p.c.) at 10:00 AM, and sacrificed on day 8 p.c. at 1:00 PM, on day 9 p.c. at 10:00 AM, on day 10 p.c. at 10:00 AM, and at term of gestation (day 18 p.c.). At midgestation, the embryos were processed for specific immunostainings to visualize the hindbrain segmentation (day 8 p.c.) and the neural crest cell migration (days 8 and 9 p.c.). Fetuses explanted at term were all processed for skeletal examination after double-staining of osseous and cartilaginous tissues. RESULTS: At midgestation, the immunostaining of rhombomeres 3 and 5 showed a light scattering of the immunostained areas; the neural crest cell migration was unaffected, but their localization at the branchial arch level was abnormal. At term, several severe malformations were observed at the craniofacial and at the axial skeletal level. Ectopic cartilage was observed at the upper jaw. CONCLUSIONS: Triadimefon is teratogenic. The observed craniofacial malformations could be explained by an alteration of the rhombomeric organization and neural crest migration to the branchial arches; the axial abnormalities could be explained by the abnormal segmental identity specification.  相似文献   

15.
Hindbrain neural crest cells were labeled with DiI and followed in ovo using a new approach for long-term time-lapse confocal microscopy. In ovo imaging allowed us to visualize neural crest cell migration 2-3 times longer than in whole embryo explant cultures, providing a more complete picture of the dynamics of cell migration from emergence at the dorsal midline to entry into the branchial arches. There were aspects of the in ovo neural crest cell migration patterning which were new and different. Surprisingly, there was contact between neural crest cell migration streams bound for different branchial arches. This cell-cell contact occurred in the region lateral to the otic vesicle, where neural crest cells within the distinct streams diverted from their migration pathways into the branchial arches and instead migrated around the otic vesicle to establish a contact between streams. Some individual neural crest cells did appear to cross between the streams, but there was no widespread mixing. Analysis of individual cell trajectories showed that neural crest cells emerge from all rhombomeres (r) and sort into distinct exiting streams adjacent to the even-numbered rhombomeres. Neural crest cell migration behaviors resembled the wide diversity seen in whole embryo chick explants, including chain-like cell arrangements; however, average in ovo cell speeds are as much as 70% faster. To test to what extent neural crest cells from adjoining rhombomeres mix along migration routes and within the branchial arches, separate groups of premigratory neural crest cells were labeled with DiI or DiD. Results showed that r6 and r7 neural crest cells migrated to the same spatial location within the fourth branchial arch. The diversity of migration behaviors suggests that no single mechanism guides in ovo hindbrain neural crest cell migration into the branchial arches. The cell-cell contact between migration streams and the co-localization of neural crest cells from adjoining rhombomeres within a single branchial arch support the notion that the pattern of hindbrain neural crest cell migration emerges dynamically with cell-cell communication playing an important guidance role.  相似文献   

16.
17.
18.
The morphology of skeletal tissues formed in each of the branchial arches of higher vertebrates is unique. In addition to these structures, which are derived from the neural crest, the crest-derived connective tissues and mesodermal muscles also form different patterns in each of the branchial arches. The objective of this study was to examine how these patterns arise during avian embryonic development. Presumptive second or third arch neural crest cells were excised from chick hosts and replaced with presumptive first arch crest cells. Both quail and chick embryos were used as donors; orthotopic crest grafts were performed as controls. Following heterotopic transplantation, the hosts developed several unexpected anomalies. Externally they were characterized by the appearance of ectopic, beak-like projections from the ventrolateral surface of the neck and also by the formation of supernumerary external auditory depressions located immediately caudal to the normal external ear. Internally, the grafted cells migrated in accordance with normal, second arch pathways but then formed a complete, duplicate first arch skeletal system in their new location. Squamosal, quadrate, pterygoid, Meckel's, and angular elements were present in most cases. In addition, anomalous first arch-type muscles were found associated with the ectopic skeletal tissues in the second arch. These results indicate that the basis for patterning of branchial arch skeletal and connective tissues resides within the neural crest population prior to its emigration from the neural epithelium, and not within the pharynx or pharyngeal pouches as had previously been suggested. Furthermore, the patterns of myogenesis by mesenchymal populations derived from paraxial mesoderm is dependent upon properties inherent to the neural crest.  相似文献   

19.
20.
The neural crest provides an excellent model system to study invasive cell migration, however it is still unclear how molecular mechanisms direct cells to precise targets in a programmed manner. We investigate the role of a potential guidance factor, neuropilin-1, and use functional knockdown assays, tissue transplantation and in vivo confocal time-lapse imaging to analyze changes in chick cranial neural crest cell migratory patterns. When neuropilin-1 function is knocked down in ovo, neural crest cells fail to fully invade the branchial arches, especially the 2nd branchial arch. Time-lapse imaging shows that neuropilin-1 siRNA transfected neural crest cells stop and collapse filopodia at the 2nd branchial arch entrances, but do not die. This phenotype is cell autonomous. To test the influence of population pressure and local environmental cues in driving neural crest cells to the branchial arches, we isochronically transplanted small subpopulations of DiI-labeled neural crest cells into host embryos ablated of neighboring, premigratory neural crest cells. Time-lapse confocal analysis reveals that the transplanted cells migrate in narrow, directed streams. Interestingly, with the reduction of neuropilin-1 function, neural crest cells still form segmental migratory streams, suggesting that initial neural crest cell migration and invasion of the branchial arches are separable processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号