首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitory effects of glabridin, an isoflavan isolated from licorice (Glycyrrhiza glabra) root, and its derivatives on the oxidation of LDL induced by copper ions or mediated by macrophages were studied, in order to evaluate the contribution of the different parts of the isoflavan molecule to its antioxidant activity. The peak potential (E1/2) of the isoflavan derivatives, their radical scavenging capacity toward 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical and their ability to chelate heavy metals were also analyzed and compared to their inhibitory activity on LDL oxidation. In copper ion-induced LDL oxidation, glabridin (1), 4′-O-methylglabridin (2), hispaglabridin A (3), and hispaglabridin B (4), which have two hydroxyl groups at positions 2′ and 4′ or one hydroxyl at position 2′ on ring B, successfully inhibited the formation of conjugated dienes, thiobarbituric acid reactive substances (TBARS) and lipid peroxides, and inhibited the electrophoretic mobility of LDL under oxidation. Compounds 1–3 exhibited similar activities, whereas compound 4 was less active. In macrophage-mediated LDL oxidation, the TBARS formation was also inhibited by these isoflavans (1–4) at a similar order of activity to that obtained in copper ion-induced LDL oxidation. On the other hand, 2′-O-methylglabridin (5), a synthesized compound, whose hydroxyl at 2′-position is protected and the hydroxyl at 4′-position is free, showed only minor inhibitory activity in both LDL oxidation systems. 2′,4′-O-Dimethylglabridin (6), whose hydroxyls at 2′- and 4′-positions are both protected, was inactive. Resorcinol (7), which is identical to the phenolic B ring in glabridin, presented low activity in these oxidation systems. The isoflavene glabrene (8), which contains an additional double bond in the heterocyclic C ring, was the most active compound of the flavonoid derivatives tested in both oxidation systems. The peak potential of compounds 1–5 (300 μM), tested at pH 7.4, was similar (425–530 mV), and that for compound 6 and 8 was 1078 and 80 mV, respectively. Within 30 min of incubation, compounds 1, 2, 3, 4, 8 scavenged 31%, 16%, 74%, 51%, 86%, respectively, of DPPH radical, whereas compounds 5 and 6, which almost did not inhibit LDL oxidation, also failed to scavenge DPPH. None of the isoflavan derivatives nor the isoflavene compound were able to chelate iron, or copper ions. These results suggest that the antioxidant effect of glabridin on LDL oxidation appears to reside mainly in the 2′ hydroxyl, and that the hydrophobic moiety of the isoflavan is essential to obtain this effect. It was also shown that the position of the hydroxyl group at B ring significantly affected the inhibitory efficiency of the isoflavan derivatives on LDL oxidation, but did not influence their ability to donate an electron to DPPH or their peak potential values.  相似文献   

2.
The ability of a number of flavonoids belonging to the flavone, flavonol, flavanone, and flavan-3-ol subclasses to protect cellular DNA from H2O2-induced single-strand breaks and the underlying molecular mechanisms were investigated in this work. Formation of single-strand breaks on nuclear DNA, after exposure of Jurkat cells to continuously generated H2O2 in the presence or absence of the flavonoid compounds, was evaluated by the comet assay (single-cell gel electrophoresis). The results indicate the following structural requirements of flavonoids for effective DNA protection: (a) the ortho-dihydroxy structure in either ring A or ring B, (b) the hydroxyl moiety on position 3 in combination with the oxo group at position 4, and (c) the presence of a C2, C3 double bond in ring C. In contrast to free flavonoids, the ability of complexes of [Fe2+]/[flavonoid] to protect nuclear DNA was decreased as the ratio increased, and the complex was completely inactive when the ratio reached a certain value. Moreover, it was observed that several of the flavonoids tested were able to remove iron from calcein loaded into cells and that this property was in excellent correlation with their ability to protect DNA (Spearman's correlation coefficient, ρ = 0.9, p = 0.005). The antioxidant (electron donating) capacities of the same flavonoids were also evaluated by a conventional method, but no relation with their DNA-protective ability could be established even when their membrane-penetrating abilities were taken into account (p = 0.64). In conclusion, the results presented in this work strongly support the notion that intracellular binding of iron is responsible for the protection offered by flavonoids against H2O2-induced DNA damage.  相似文献   

3.
Twenty-six flavonoids and related compounds were screened for their ability to modulate microsome mediated covalent adduct formation between [3H]benzo[a]pyrene ([3H]BP) and DNA in vitro. Some of these flavonoids, notably robinetin, quercetin, isorhamnetin and kaempferol were observed to inhibit the adduct formation significantly at very low levels. The unsubstituted flavone and some of the other flavonoids moderately inhibited this adduct formation, while some flavonoids were inactive, viz., most of the isoflavonoids and methylether derivatives of polyhydroxylated flavonoids. Structural features contributory towards the inhibitory activity of flavonoids appeared to be hydroxyl groups in 3 position of C ring, 5,7-positions of A ring and 3',4'- and 5'-positions of B ring. Methylation or glycosylation of hydroxyl group rendered the flavonoid less active or inactive. Flavanones, with saturated 2,3 double bond, were also inactive. Metabolic activation of BP to proximate carcinogen (+/-)-trans-7,8-dihydroxy-7,8-dihydro-BP (BP-7,8-dihydrodiol) was also measured in presence of some of these flavonoids. The extent of inhibition of metabolism by these flavonoids did not correlate with their ability to inhibit the adduct formation. Thus, suppression of metabolism did not appear to be a major contributory factor towards inhibition of adduct formation. The solvolysis in aqueous dioxane of (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDE I), the ultimate carcinogen of BP, was accelerated in presence of selected flavonoids. Inactivation of BPDE I, therefore, appeared to be the major mechanism by which some of these flavonoids inhibited the adduct formation between BP and DNA, and this could be the basis for the anti-carcinogenic nature of these flavonoids.  相似文献   

4.
Avian myosin light chain kinase (MLCK) is inhibited by a range of plant-derived flavonoids. Maximal inhibition requires 2,3-unsaturation and polyhydroxylation of two of the three flavonoid rings. Phosphorylation of a synthetic myosin light chain-related peptide by wheat embryo Ca(2+)-dependent protein kinase (CDPK) is also inhibited by a range of flavonoids but phosphorylation of histone preparation III-S by wheat CDPK is not inhibited by flavonoids. The structural requirements for inhibition of wheat CDPK by flavonoids are more stringent than for inhibition of avian MLCK. Potent flavonoid inhibitors of wheat CDPK are unsaturated in 2,3 position, have hydroxyl groups in positions 3' and 4' and an additional hydroxyl in the chromone ring. Flavonoid glycosylation or methylation can abolish inhibition. A number of other naturally occurring plant phenolics including chalcones and gossypol also inhibit avian MLCK and wheat CDPK. Gossypol binds to calmodulin, abolishing Ca(2+)-dependent enhancement of dansyl-calmodulin fluorescence.  相似文献   

5.
The influence of novel synthetic and plant origin flavonoids on activity of multidrug resistance-associated protein (MRP1) was investigated in human erythrocytes used as a cell model expressing MRP1 in plasma membrane. The fluorescent probe, BCPCF (2', 7'-bis-(3-carboxy-propyl)-5-(and-6)-carboxyfluorescein), was applied as a substrate for MRP1 multidrug resistance transporter. The effect of compounds belonging to different classes of natural flavonoids: flavone, flavonol, isoflavones and flavanolignan was compared with action of new synthetic derivatives of genistein. Most of the flavonoids showed strong or moderate ability to inhibit transport carried out by MRP1. Inhibitory properties of flavonoids were compared to the effects of indomethacin, probenecid and MK-571 known as MRP1 inhibitors. Studying the influence of new synthetic genistein derivatives on BCPCF transport we have found that the presence of hydrophobic groups substituting hydrogen of hydroxyl group at the position 4' in ring B of isoflavone is more important for inhibitory properties than hydrophobic substitution at the position 7 in ring A. In case of naturally occurring isoflavones the replacement of hydrogen at position 4' by hydrophobic ring structure seems also to be favourable for inhibition potency.  相似文献   

6.
7.
Compounds, which inhibit tyrosinase, could be effective as depigmenting agents. We have introduced a group of mono-, di-, tri- and tetra-substituted hydroxychalcones as effective tyrosinase inhibitors, showing that the most important factor determining tyrosinase inhibition efficiency is the position of the hydroxyl group(s) rather their number. The aim of the present study was to investigate the contribution of the different functional groups of the tetrahydroxychalcones to their inhibitory potency, with a view to optimizing the design of whitening agents. Four tetrahydroxychalcones were evaluated, the commercially available Butein and other three were synthesized, and their inhibitory effect on tyrosinase was tested. Results showed that a 2,4-substituted resorcinol subunit on ring B contributed the most to inhibitory potency. Changing the resorcinol substitute to position 3,5- or placing it on ring A significantly diminished the inhibitory effect of the compounds. A catechol subunit on ring A acted as a metal chelator (in the presence of copper ions) and as a competitive inhibitor (in the presence of tyrosinase), while a catechol on ring B oxidized to o-quinone (in the presence of both copper ions and tyrosinase). Three of the compounds also demonstrated antioxidant activity, which may contribute to the prevention of pigmentation. An examination of correlations between inhibitory activity and physical properties of the chalcones tested (such as dissociation energy and molecular planarity) showed positive correlation with the moment dipole value in the Y-axis, which may be used as an indicator of the inhibitory potential of new molecules. The present study revealed two very active tyrosinase inhibitors, 2,4,3',4'-hydroxychalcone and 2,4,2',4'-hydroxychalcone (with IC50 of 0.2 and 0.02 microM, respectively). Structure-related activity studies added some understanding of the role and contribution of different functional groups associated with tyrosinase inhibitors.  相似文献   

8.
In our previous study, the isolation of ugonin J, K, and L, which are luteolin derivatives, from the roots of Helminthostachys zeylanica and their identification as potent melanogenesis inhibitors, was described. The structure activity relationship (SAR) investigation in that study revealed that the catechol moiety in the B-ring of the flavone skeleton of ugonin K was important for its melanogenesis inhibitory activity, and the presence of the low polarity substituents at the C-7 position enhanced this activity. In order to further investigate the SAR of the C-7-substituent in the luteolin derivatives, different groups were selectively introduced at the C-7 position of luteolin after borax protection of the catechol hydroxyl group and the C-5 hydroxyl group. NMR and MS analysis of the borax protected derivatives revealed that the borax protects not only hydroxyl groups of catechol on the B ring but also the 5-hydroxyl group on the A ring. Eight luteolin derivatives were synthesized and evaluated for melanogenesis inhibitory effect in B16 melanoma cells. Two bulky groups and six alkoxyl groups were introduced at the C-7 position. The resulting luteolin derivatives showed improved melanogenesis and cell proliferation inhibitory activities. From among these derivatives, 7-O-hexylluteolin (7) showed the highest activity and inhibited the melanogenesis to 14% at 6.25?μM. The present study also revealed that the length of the carbon chain rather than the bulky substituent was more important for the melanogenesis inhibitory activity.  相似文献   

9.
40 compounds structurally related to the plant flavonol quercetin were tested for mutagenic activity in Salmonella typhimurium strain TA98. 10 flavonols, quercetin, myricetin, rhamnetin, galangin, kaempferol, tamarixetin, morin, 3'-O-methylquercetin, 7,4'-di-O-methylquercetin and 5,7-di-O-methyl-quercetin, exhibited unequivocal mutagenic activity. 4 compounds, quercetin, myricetin, rhamnetin and 5,7-di-O-methylquercetin, were active without metabolic activation, although metabolic activation markedly enhanced their activity. All 4 have free hydroxyl groups at the 3' and 4' positions of the B ring. The other active compounds required an in vitro rat-liver metabolizing system for significant activity. Structural features which appear essential for mutagenic activity in this strain are a basic flavanoid ring structure with (1) a free hydroxyl group at the 3 position, (2) a double bond at the 2, 3 position, (3) a keto group at the 4 position, and (4) a structure which permits the proton of the 3-hydroxyl group to tautomerise to a 3-keto compound. The data are consistent with the requirement for a B ring structure that permits oxidation to quininoid intermediates. Free hydroxyl groups in the B ring are not essential for activity if a rat-liver metabolic activating system is employed. Data from 12 compounds which differ only at the essential sites described above indicate that the structural requirements for mutagenicity in strain TA100 are the same as those for activity in strain TA98. Based on the above structural requirements, a metabolic pathway for flavonol activation to DNA-reactive species is proposed.  相似文献   

10.
Flavonoids are main polyphenolic groups widely distributed to fruits, vegetables and beverages we consumed daily. They exhibit many biological effects. We tested tyrosinase inhibitor potential of structurally related (19) flavonoids and found that all the tested materials possessed tyrosinase inhibitory effect compared to the positive control, kojic acid. 2 exhibited the strongest tyrosinase inhibitory effect with an IC50 value of 40.94 ± 0.78 µM in a competitive manner. According to kinetic analysis 1, 4 and 7 were found to be competitive inhibitors, 3, 5, and 6 noncompetitive inhibitors of tyrosinase. According to the docking studies, A and C ring of the flavonoid structure, hydroxyl substituent at the 7th position, and hydroxyl substituents at para or para and meta position of ring B play key role for competitive inhibition of the enzyme.  相似文献   

11.
Oxidative modification of low density lipoprotein (LDL) may play an important role in the development of atherosclerosis. Alpha-tocopherol functions as a major antioxidant in human LDL. The present study was to test whether four natural flavonoids (kempferol, morin, myricetin, and quercetin) would protect or regenerate alpha-tocopherol in human LDL. The oxidation of LDL incubated in sodium phosphate buffer (pH 7.4, 10 mM) was initiated by addition of either 5.0 mM CuSO(4) at 37 degrees C or 1.0 mM of 2,2'-azo-bis (2-amidinopropane) dihydrochloride (AAPH) at 40 degrees C. It was found that alpha-tocopherol was completely depleted within 1 hour. Under the same experimental conditions, all four flavonoids demonstrated a dose-dependent protecting activity to alpha-tocopherol in LDL at the concentration ranging from 1 to 20microM. All flavonoids showed a varying protective activity against depletion of alpha-tocopherol in LDL, with kempherol and morin being less effective than myricetin and quercetin. The addition of flavonoids to the incubation mixture after 5 minutes demonstrated a significant regeneration of alpha-tocopherol in human LDL. The protective activity of four flavonoids to LDL is related to the number and location of hydroxyl groups in the B ring as well as the stability in sodium phosphate buffer.  相似文献   

12.
Flavonls are natural compounds present in edible plants and possess several biological activities that can be useful in drug design. Conversely some of these compounds have been shown to be genotoxic to prokaryotic and eukaryotic cells. In this study we tried to establish the chemical features responsible for the genotoxicity of flavonols and to study the conditions that can modulate their genotoxicity namely pH, the presence of antioxidants and metabolism. We assessed the induction of revertants in Salmonella typhimurium TA98 and the induction of Chromosomal aberrations in V79 cells by eight different flavonols and one catechin in the presence and in the absence of metabolizing systems. We have also studied the generation of hydroxyl radical by these flavonoids using the deoxyribose degradation assay. The results obtained in this study suggest that flavonols having a free hydroxyl group at position 3 of the C ring, a free hydroxyl group at position 7 of the A ring and a B ring with a catechol or pyrogallol structure, or a structure that after metabolic activation is transformed into a catechol or a pyrogallol, are flavonols whose genotoxicity in eukaryotic cells depends on their autooxidation. These flavonols can autooxidize when the pH value is slightly alkaline, such as in the intestine, and therefore can induce genotoxicity in humans. Given the above mentioned considerations it is necessary to clarify the mechanisms and the conditions that mediate the biological effects of flavonols before considering them as therapeutical agents.  相似文献   

13.
Twenty hydroxylated and acetoxylated 3-phenylcoumarins were synthesized, and the structure-activity relationships were investigated by evaluating the ability of these compounds to modulate horseradish peroxidase (HRP) catalytic activity and comparing the results to four flavonoids (quercetin, myricetin, kaempferol and galangin), previously reported as HRP inhibitors. It was observed that 3-phenylcoumarins bearing a catechol group were as active as quercetin and myricetin, which also show this substituent in the B-ring. The presence of 6,2'-dihydroxy group or 6,7,3',4'-tetraacetoxy group in the 3-phenylcoumarin structure also contributed to a significant inhibitory effect on the HRP activity. The catechol-containing 3-phenylcoumarin derivatives also showed free radical scavenger activity. Molecular modeling studies by docking suggested that interactions between the heme group in the HRP active site and the catechol group linked to the flavonoid B-ring or to the 3-phenyl coumarin ring are important to inhibit enzyme catalytic activity.  相似文献   

14.
Flavonoids are an interesting group of natural products ubiquitously present in human diet. Their consumption has been associated with various and differing beneficial health effects. However, several flavonoids have been reported to inhibit the breast cancer resistance protein (BCRP) encoded by the ABCG2 gene. Thus, the consumption of flavonoids with high inhibitory activity could change pharmacokinetics and drug levels of drugs that are BCRP substrates. In cancer patients receiving chemotherapy an increased intake of such flavonoids could lead to adverse effects. We investigated a structurally diverse set of flavonoids, including derivatives with a rare C-methylated structure that were isolated from plants used in traditional medicine. The flavones retusin and ayanin were found to be highly potent inhibitors of BCRP, showing only slightly less potency than Ko143, the most potent ABCG2 inhibitor known so far. The activity data were analyzed by 2D and 3D QSAR analyses and the results revealed the impact of the different substituents at the various positions of the flavonoid core on activity. Additionally, a lateral 2D QSAR analysis of data collected from the literature was performed aiming to derive more general information about the influence of distinct structural features on the inhibitory potency of flavonoids. The comparative QSAR analyses led to a consistent picture of the effects of the different substituents at various positions of the flavone backbone. The following structural features were found to contribute positively to BCRP inhibition: a hydroxyl group in position 5, double bond between position 2 and 3, and a methoxy group in position 3. The exchange of a 3-methoxy group by an OH-group acting also as a hydrogen bond donor, resulted in decrease in activity underlining the potential role of the hydrogen bond acceptor 3-OCH(3) for the interaction with BCRP.  相似文献   

15.
The protective effect of di-tert-butylhydroxylated flavonoids (chalcones and arylidenes) against minimally oxidized LDL (mO-LDL)-induced cytotoxicity was studied in cultured bovine aortic endothelial cells. Most of the tested compounds decreased aldehydes formation in medium containing mO-LDL, but their capacity to inhibit LDL oxidation in the cellular medium was not sufficient to totally reduce the cellular toxicity of mO-LDL. Most of the tested flavonoids improved the integrity of cells exposed to mO-LDL, whereas butylated hydroxytoluene was ineffective and quercetin worsened the toxicity of mO-LDL. Moreover these flavonoids induced an increase in GSH cellular levels and their protective effects might be because of their inability to reduce metal ion. Arylidene 6 substituted at position 7 by a hydroxyl group was the most potent compound.  相似文献   

16.
Antioxidant properties of di-tert-butylhydroxylated flavonoids   总被引:5,自引:0,他引:5  
Epidemiological evidence suggests an inverse relationship between dietary intake of flavonoids and cardiovascular risk. The biological activities of flavonoids are related to their antioxidative effects, but they also can be mutagenic, due to the prooxidant activity of the catechol pattern. To prevent these problems, we synthesized new flavonoids where one or two di-tert-butylhydroxyphenyl (DBHP) groups replaced catechol moiety at position 2 of the benzopyrane heterocycle. Two DBHP moieties can also be arranged in an arylidene structure or one DBHP fixed on a chalcone structure. Position 7 on the flavone and arylidene or position 4 on the chalcone was substituted by H, OCH(3), or OH. New structures were compared with quercetin and BHT in an LDL oxidation system induced by Cu(II) ions. Arylidenes and chalcones had the best activities (ED(50) = 0.86 and 0.21) compared with vitamin E, BHT, and quercetin (ED(50) = 10.0, 7. 4, and 2.3 microM). Activity towards stable free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) was measured by log Z and ECR(50) parameters. Synthesized flavones proved to be poor DPPH radical scavengers, the activity increasing with the number of DBHP units. In contrast, arylidenes and chalcones were stronger DPPH radical scavengers (log Z > 3, 0.3 < ECR(50) < 2.12) than BHT (log Z = 0.75, ECR(50) = 12.56) or quercetin (log Z = 2.76, ECR(50) = 0.43). Unlike quercetin, synthesized compounds neither chelated nor reduced copper, proving that these new flavonoids had no prooxidant activity in vitro.  相似文献   

17.
The structure-activity relationships of flavonoids with regard to their inhibitory effects on NADH-cytochrome b5 reductase (E.C. 1.6.2.2), a clinically and toxicologically important enzyme, are not known. In the present study, the inhibitory effects of fourteen selected flavonoids of variable structure on the activity of purified bovine liver cytochrome b5 reductase, which shares a high degree of homology with the human counterpart, were investigated and the relationship between structure and inhibition was examined. Of all the compounds tested, the flavone luteolin was the most potent in inhibiting b5 reductase with an IC50 value of 0.11 μM, whereas naringenin, naringin and chrysin were inactive within the concentration range tested. Most of the remaining flavonoids (morin, quercetin, quercitrin, myricetin, luteolin-7-O-glucoside, (-)-epicatechin, and (+)-catechin) produced a considerable inhibition of enzyme activity with IC50 values ranging from 0.81 to 4.5 μM except apigenin (36 μM), rutin (57 μM) and (+)-taxifolin (IC50 not determined). The magnitude of inhibition was found to be closely related to the chemical structures of flavonoids. Analysis of structure-activity data revealed that flavonoids containing two hydroxyl groups in ring B and a carbonyl group at C-4 in combination with a double bond between C-2 and C-3 produced a much stronger inhibition, whereas substitution of a hydroxyl group at C-3 was associated with a less inhibitory effect. The physiologically relevant IC50 values for most of the flavonoids tested regarding b5 reductase inhibition indicate a potential for significant flavonoid-drug and/or flavonoid-xenobiotic interactions which may have important therapeutic and toxicological outcomes for certain drugs and/or xenobiotics.  相似文献   

18.
To determine the antioxidant activity of dietary quercetin (3,3',4', 5,7-pentahydroxyflavone) in the blood circulation, we measured the inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation of human low-density lipoprotein (LDL). Conjugated quercetin metabolites were prepared from the plasma of rat 1 h after oral administration of quercetin aglycone (40 micromol/rat). The rate of cholesteryl ester hydroperoxide (CE-OOH) accumulation and the rate of alpha-tocopherol consumption in mixtures of LDL solution (0.4 mg/ml) with equal volumes of this preparation were slower than the rates in mixtures of LDL with preparations from control rats. The concentrations of CE-OOH after 2 h oxidation in the mixtures of LDL with preparations of conjugated quercetin metabolites were significantly lower than those in the control preparation. It is therefore confirmed that conjugated quercetin metabolites have an inhibitory effect on copper ion-induced lipid peroxidation in human LDL. Quercetin 7-O-beta-glucopyranoside (Q7G) and rhamnetin (3,3',4', 5-tetrahydroxy-7-methoxyflavone) exerted strong inhibition and their effect continued even after complete consumption, similarly to quercetin aglycone. The effect of quercetin 3-O-beta-glucopyranoside (Q3G) did not continue after its complete consumption, indicating that the antioxidant mechanism of quercetin conjugates lacking a free hydroxyl group at the 3-position is different from that of the other quercetin conjugates. The result that 4'-O-beta-glucopyranoside (Q4'G) and isorhamnetin (3,4',5, 7-tetrahydroxy-3'-methoxyflavone) showed little inhibition implies that introduction of a conjugate group to the position of the dihydroxyl group in the B ring markedly decreases the inhibitory effect. The results of azo radical-induced lipid peroxidation of LDL and the measurement of free radical scavenging capacity using stable free radical, 1,1,-diphenyl-2-picrylhydrazyl, demonstrated that the o-dihydroxyl structure in the B ring is required to exert maximum free radical scavenging activity. It is therefore likely that conjugation occurs at least partly in positions other than the B ring during the process of metabolic conversion so that the inhibitory effect of dietary quercetin is retained in blood plasma after absorption.  相似文献   

19.
CYP1A1 and CYP1B1 are two extrahepatic enzymes that have been implicated in carcinogenesis and cancer progression. Selective inhibition of CYP1A1 and CYP1B1 by dietary constituents, notably the class of flavonoids, is a widely accepted paradigm that supports the concept of dietary chemoprevention. In parallel, recent studies have documented the ability of CYP1 enzymes to selectively metabolize dietary flavonoids to conversion products that inhibit cancer cell proliferation. In the present study we have examined the inhibition of CYP1A1 and CYP1B1-catalyzed EROD activity by 14 different flavonoids containing methoxy- and hydroxyl-group substitutions as well as the metabolism of the monomethoxylated CYP1-flavonoid inhibitor acacetin and the poly-methoxylated flavone eupatorin-5-methyl ether by recombinant CYP1A1 and CYP1B1. The most potent inhibitors of CYP1-EROD activity were the methoxylated flavones acacetin, diosmetin, eupatorin and the di-hydroxylated flavone chrysin, indicating that the 4'-OCH(3) group at the B ring and the 5,7-dihydroxy motif at the A ring play a prominent role in EROD inhibition. Potent inhibition of CYP1B1 EROD activity was also obtained for the poly-hydroxylated flavonols quercetin and myricetin. HPLC metabolism of acacetin by CYP1A1 and CYP1B1 revealed the formation of the structurally similar flavone apigenin by demethylation at the 4'-position of the B ring, whereas the flavone eupatorin-5-methyl ether was metabolized to an as yet unidentified metabolite assigned E(5)M1. Eupatorin-5-methyl ether demonstrated a submicromolar IC(50) in the CYP1-expressing cancer cell line MDA-MB 468, while it was considerably inactive in the normal cell line MCF-10A. Homology modeling in conjunction with molecular docking calculations were employed in an effort to rationalize the activity of these flavonoids based on their CYP1-binding mode. Taken together the data suggest that dietary flavonoids exhibit three distinct modes of action with regard to cancer prevention, based on their hydroxyl and methoxy decoration: (1) inhibitors of CYP1 enzymatic activity, (2) CYP1 substrates and (3) substrates and inhibitors of CYP1 enzymes.  相似文献   

20.
Flavonoids are an important group of natural compounds that can interfere with the activity of some enzymes. In this study, effects of various flavonoids on aldehyde oxidase (AO) activity were evaluated in vitro. AO was partially purified from guinea pig liver. The effects of 12 flavonoids from three subclasses of flavon-3-ol, flavan-3-ol and flavanone on the oxidation of vanillin and phenanthridine as substrates of AO and xanthine as a substrate of xanthine oxidase (XO) were investigated spectrophotometrically. Among the 12 flavonoids, myricetin and quercetin were the most potent inhibitors of both AO and XO. In general, the oxidation of vanillin was more inhibited by flavonoids than that of phenanthridine. Almost all of the flavonoids inhibited AO activity more potently than XO, which was more evident with non-planner flavanols. A planner structure seems to be essential for a potent inhibitory effect and any substitution by sugar moieties reduces the inhibitory effects. This study could provide a new insight into AO natural inhibitors with potential to lead to some food-drug interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号