共查询到20条相似文献,搜索用时 6 毫秒
1.
We have used electron paramagnetic resonance (EPR) spectra to study spin labels selectively and rigidly attached to myosin heads in glycerinated rabbit psoas muscle fibers. Because the angle between the magnetic field and the principal axis of the probe determines the position of the EPR absorption line, spectra from labeled fibers oriented parallel to the magnetic field yielded directly the distribution of spin label orientations relative to the fiber axis. Two spin labels, having reactivities resembling iodoacetamide (IASL) and maleimide (MSL), were used. In rigor fibers with complete filament overlap, both labels displayed a narrow angular distribution, full width at half maximum approximately 15 degrees, centered at angles of 68 degrees (IASL) and 82 degrees (MSL). Myosin subfragments (heavy meromyosin and subfragment-1) were labeled and allowed to diffuse into fibers. The resulting spectra showed the same sharp angular distribution that was found for the labeled fibers. Thus is appears that virtually all myosin heads in a rigor fiber have the same orientation relative to the fiber axis, and this orientation is determined by the actomyosin bond. Experiments with stretched fibers indicated that the spin labels on the fraction of heads not interacting with actin filaments had a broad angular distribution. Addition of ATP to unstretched fibers under relaxing conditions produced orientational disorder, resulting in a spectrum almost indistinguishable from that of an isotropic distribution of probes. Addition of either an ATP analog (AMPPNP) or pyrophosphate produced partial disorder. That is a fraction of the probes remained sharply oriented as in rigor while a second fraction was in a disordered distribution similar to that of relaxed fibers. 相似文献
2.
Orientation of spin-labeled nucleotides bound to myosin in glycerinated muscle fibers. 总被引:1,自引:4,他引:1 下载免费PDF全文
Electron paramagnetic resonance (EPR) spectroscopy of paramagnetic derivatives of ATP has been used to probe the angular distribution of myosin in glycerinated muscle fibers. Three nucleotide spin labels have been prepared with the nitroxide free radical moiety attached, via an ester linkage to either: the 2' or 3' positions of the ribose unit of ATP (SL-ATP), the 2' position of 3' deoxy ATP (2'SL-dATP), or the 3' position of 2' deoxy ATP (3'SL-dATP). In muscle fibers, these nucleotides are quickly hydrolyzed to their diphosphate forms. All three diphosphate analogues bind to the nucleotide site of myosin with similar affinities: rabbit psoas fibers, 7 X 10(3)/M; insect flight muscle, 5 X 10(3)/M; and rabbit soleus muscle, 2 X 10(4)/M. Analysis of the spectra showed that the principal z-axis of the nitroxide attached to bound nucleotides was oriented with respect to the filament axis. The principal axes of 3'SL-dADP and 2'SL-dADP appeared to be preferentially aligned at mean angles of 67 degrees +/- 4 degrees and 55 degrees +/- 5 degrees, respectively. The distribution of probes about these angles can be described by Gaussians with widths of 16 degrees +/- 4 degrees and 13 degrees +/- 5 degrees, respectively. The spectrum of bound SL-ADP was a linear combination of the spectra of the two deoxy analogues. These orientations were the same in the three muscle types examined, indicating a high degree of homology in the nucleotide binding site. Applying static strains as high as 0.2 N/mm2 to muscle fibers caused no change in the orientation of myosin-bound, spin-labeled nucleotides. When muscle fibers were stretched to decrease actin and myosin filament overlap, bound SL-ADP produced EPR spectra indicative of probes with a highly disordered angular distribution. Sodium vanadate and SL-ATP caused fiber stiffness to decrease, and the EPR spectrum of the bound analogue indicated an increase in the fraction of disoriented probes with a concomitant decrease in the fraction of oriented probes. These findings indicate that when myosin is bound to actin its nucleotide site is highly oriented relative to the fiber axis, and when this interaction is removed the orientation of the nucleotide site becomes highly disordered. 相似文献
3.
T Arata 《Journal of molecular biology》1990,214(2):471-478
Electron paramagnetic resonance (e.p.r.) spectroscopy has been used to monitor the orientation of spin labels attached rigidly to a reactive SH residue on the light chain 2 (LC2) of myosin heads in muscle fibers. e.p.r. spectra from spin-labeled myosin subfragment-1 (S1), allowed to diffuse into unlabeled rigor (ATP-free) fibers, were roughly approximated by a narrow angular distribution of spin labels centered at 66 degrees relative to the fiber axis, indicating a uniform orientation of S1 bound to actin. On the other hand, spectra from spin-labeled heavy meromyosin (HMM) were roughly approximated by two narrow angular distributions centered at 42 degrees and 66 degrees, suggesting that the LC2 domains of the two HMM heads have different orientations. In contrast to S1 or HMM, the spectra from rigor fibers, in which LC2 of endogenous myosin heads was labeled, showed a random orientation which may be due to distortion imposed by the structure of the filament lattice and the mismatch of the helical periodicities of the thick and thin filaments. However, spectra from the fibers in the presence of ATP analog 5'-adenylyl imidodiphosphate (AMPPNP) were approximated by two narrow angular distributions similar to those obtained with HMM. Thus, AMPPNP may cause the LC2 domain to be less flexible and/or the S2 portion to be more flexible, so as to release the distortion of the LC2 domain and make it return to its natural position. At high ionic strength, AMPPNP disoriented the spin labels as ATP did under relaxing conditions, suggesting that the myosin head is detached from and/or weakly (flexibly) attached to a thin filament. 相似文献
4.
A simple method for obtaining glycerinated muscle fibres of m. psoas of rabbit containing regulatory myosin light chains (LC2) of different levels of phosphorylation. The glycerination conditions stimulated endogenic kinase LC2 or phosphatase LC2. Glycerinated muscle fibres contained phosphorylated and dephosphorylated (levels of phosphorylation are 95 +/- 5%, and 5 +/- 5%, respectively) LC2 of myosin. To determine the level of phosphorylation the method of polyacrylamide gel electrophoresis in 8 M urea was modified. 相似文献
5.
Observation of two orientations from rigor cross-bridges in glycerinated muscle fibers 总被引:1,自引:0,他引:1
The fluorescence polarization from rhodamine labels specifically attached to the fast-reacting thiol of the myosin cross-bridge in glycerinated muscle fibers has been measured to determine the angular distribution of the cross-bridges in different physiological states of the fibers as a function of temperature. To investigate the fibers at temperatures below 0 degree C, we have added glycerol to the bathing solution as an anti-freezing agent. We find that the fluorescence polarization from the rhodamine probe detects distinct angular distributions of the cross-bridges in isometric-active, rigor, MgADP, and low ionic strength relaxed fibers at 4 degrees C. We also find that the rigor cross-bridges in the presence of glycerol can maintain at least two distinct orientations relative to the actin filament, one dominant at temperatures T greater than 2 degrees C and another dominant at T less than -10 degrees C. MgADP cross-bridges in the presence of glycerol maintain approximately the same orientation for all temperatures investigated. The rigor cross-bridge orientation at T less than -10 degrees C is similar to both the MgADP cross-bridge orientation in the presence of glycerol and the active muscle cross-bridge orientation at 4 degrees C. These findings show that the rigor cross-bridge in the presence of glycerol has at least two distinct orientations while attached to actin: one of them dominant at high temperature, the other dominant at low temperature or when MgADP is present. The latter orientation resembles that present in isometric-active fibers.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Orientation of intermediate nucleotide states of indane dione spin-labeled myosin heads in muscle fibers. 下载免费PDF全文
We have used electron paramagnetic resonance to study the orientation of myosin heads in the presence of nucleotides and nucleotide analogs, to induce equilibrium states that mimic intermediates in the actomyosin ATPase cycle. We obtained electron paramagnetic resonance spectra of an indane dione spin label (InVSL) bound to Cys 707 (SH1) of the myosin head, in skinned rabbit psoas muscle fibers. This probe is rigidly immobilized on the catalytic domain of the head, and the principal axis of the probe is aligned nearly parallel to the fiber axis in rigor (no nucleotide), making it directly sensitive to axial rotation of the head. On ADP addition, all of the heads remained strongly bound to actin, but the spectral hyperfine splitting increased by 0.55 +/- 0.02 G, corresponding to a small but significant axial rotation of 7 degrees. Adenosine 5'-(adenylylim-idodiphosphate) (AMPPNP) or pyrophosphate reduced the actomyosin affinity and introduced a highly disordered population of heads similar to that observed in relaxation. For the remaining oriented population, pyrophosphate induced no significant change relative to rigor, but AMPPNP induced a slight but probably significant rotation (2.2 degrees +/- 1.6 degrees), in the direction opposite that induced by ADP. Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) relaxed the muscle fiber, completely dissociated the heads from actin, and produced disorder similar to that in relaxation by ATP. ATP gamma S plus Ca induced a weak-binding state with most of the actin-bound heads disordered. Vanadate had negligible effect in the presence of ADP, but in isometric contraction vanadate substantially reduced both force and the fraction of oriented heads. These results are consistent with a model in which myosin heads are disordered early in the power stroke (weak-binding states) and rigidly oriented later in the power stroke (strong-binding states), whereas transitions among the strong-binding states induce only slight changes in the axial orientation of the catalytic domain. 相似文献
7.
The structural changes of phalloidin-rhodamin labelled F-actin at relaxed and contracted skeletal muscle fibre containing phosphorylated myosin and at contracted state after dephosphorylation were investigated by measuring of polarized fluorescence of the fluorophore. The mechanical properties (isometric tension development) of fibre were studied in parallel. At submaximal concentration of Ca ions (0.6 mumol/l) the isometric tension was decreased after dephosphorylation of fibre myosin. The changes in polarization of fluorophore bound to actin filament were correlated with isometric tension developed by the muscle fibre. The angles between the actin filament long axis and the absorption and emission dipoles for contracted and relaxed fibre were different, suggesting changes in the organization of the actin monomers in thin filament, dependent on the physiological state of the fibre. The flexibility of the thin filaments during transition of the fibre from relaxed to "contracted" state increases as indicated by greater average angle between the F-actin long axis and the fibre axis. 相似文献
8.
9.
10.
We have previously characterized human smooth muscle myosin light chain (MLC)-2 isoform by complementary DNA cloning and have shown that this isoform is expressed in a number of nonmuscle cells such as fibroblast cells. In this report, we show that when human osteosarcoma derived clonal cells (TE 85 clone F-5) (HOS), which are immortalized and nontumorigenic, undergo transformation following infection by Kirsten murine sarcoma virus (K-HOS) or by a chemical carcinogen [N-methyl-N-nitro-N-nitrosoguanidine (MNNG-HOS)], the smooth muscle MLC-2 mRNA is repressed. Revertants of transformed K-HOS cells (K-HOS312H) show normal levels of smooth muscle MLC-2 mRNA. Transformation of HOS cells by Ha-ras oncogene sequences, either by retroviral infection or by transfection followed by selection for tumorigenic cells in nude mice, results in complete repression of smooth muscle MLC-2 mRNA level. Treatment of HOS cells with tumor promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate, results in repression of smooth muscle MLC-2 mRNA. Smooth muscle MLC-2 mRNA level is repressed in many, but not all, transformed cell lines, suggesting that it is not an indirect consequence of transformation but is specific to the agent that brings about transformation. HOS cells synthesize three MLC-2 protein species resolved by the two-dimensional gel electrophoretic system. The identity of the smooth muscle MLC-2 isoform was established by coelectrophoresis of the in vitro synthesized MLC-2 protein corresponding to the cloned complementary DNA in the two-dimensional gel system along with total [35S]methionine labeled HOS cell proteins. Quantitative analysis of MLC-2 isoforms in different HOS cells indicates that the synthesis of smooth muscle MLC-2 isoform is specifically repressed to an undetectable level in ras transformed and MNNG transformed cells and also following treatment with 12-O-tetradecanoylphorbol-13-acetate. 相似文献
11.
It has been shown by polarization microfluorimetry that phosphorylation of myosin light chain 2, in stretched single glycerinated fibers of rabbit skeletal muscle, results in changes in polarized fluorescence anisotropy of both the tryptophan residues of myosin molecules and the fluorescent label, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, associated with the fast-reacting thiol group in myosin heads. These changes are also dependent on the presence or absence of Mg2+ in the medium: they are most pronounced in the presence of 5 mM MgCl2. It is assumed that both Mg2+ binding to myosin and phosphorylation of light chain 2 associated with myosin heads induce structural changes in myosin filaments of muscle fibres which are expressed as changes in the orientation of myosin heads and in the conformation of myosin rods. 相似文献
12.
Orientation of the N-terminal lobe of the myosin regulatory light chain in skeletal muscle fibers 总被引:1,自引:0,他引:1
The orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100—110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ~40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle. 相似文献
13.
Removal of the regulatory light chain subunit (EDTA light chain) of myosin from glycerinated fibers of scallop adductor striated muscle resulted in an immediate loss of calcium sensitivity of tension development and in a subsequent decrease in tension developed in the presence of calcium. It is suggested that removal of EDTA light chain results in a change in the myosin heavy-chain conformation which is probably responsible for the decrease in tension development. 相似文献
14.
Glycerinated muscle fibers isolated from rabbit psoas muscle, and a number of other nonmuscle elastic fibers including glass, rubber, and collagen, were exposed to hydrostatic pressures of up to 10 MPa (100 Atm) to determine the pressure sensitivity of their isometric tension. The isometric tension of muscle fibers in the relaxed state (passive tension) was insensitive to increased pressure, whereas the muscle fiber tension in rigor state increased linearly with pressure. The tension of all other fiber types (except rubber) also increased with pressure; the rubber tension was pressure insensitive. The pressure sensitivity of rigor tension was 2.3 kN/m2/MPa and, in comparison with force/extension relation determined at atmospheric pressure, the hydrostatic compression in rigor muscle fibers was estimated to be 0.03% Lo/MPa. As reported previously, the active muscle fiber tension is depressed by increased pressure. The possible underlying basis of the different pressure-dependent tension behavior in relaxed, rigor, and active muscle is discussed. 相似文献
15.
Motion of myosin cross-bridges in skeletal muscle fibers studied by time-resolved fluorescence anisotropy decay 总被引:1,自引:0,他引:1
The time-resolved fluorescence polarization anisotropy signal has been measured from fluorescent-labeled myosin cross-bridges in single glycerinated muscle fibers in the relaxed and rigor states. In one experimental configuration, the polarization of the excitation light and the fiber axis are aligned, and the anisotropy is sensitive to rotational motions of the probes about axes other than the fiber axis. The rotational correlation times are approximately 1000 ns for relaxed fibers and greater than 7000 ns for rigor fibers. In another experimental configuration, the excitation light polarization is perpendicular to the fiber axis, and its propagation vector has a component parallel to the fiber axis so that the anisotropy is sensitive to probe rotational motion about different axes, including the fiber axis. In this configuration, the rotational correlation times are approximately 300 ns for both relaxed and rigor fibers. The theory of rotational diffusion in a potential described in a related paper [Burghardt, T.P. (1985) Biophys. J. (in press)] is applied to the relaxed fiber data. 相似文献
16.
We have used electron paramagnetic resonance (EPR) spectroscopy to study the orientation and rotational motions of spin-labeled myosin heads during steady-state relaxation and contraction of skinned rabbit psoas muscle fibers. Using an indane-dione spin label, we obtained EPR spectra corresponding specifically to probes attached to Cys 707 (SH1) on the catalytic domain of myosin heads. The probe is rigidly immobilized, so that it reports the global rotation of the myosin head, and the probe's principal axis is aligned almost parallel with the fiber axis in rigor, making it directly sensitive to axial rotation of the head. Numerical simulations of EPR spectra showed that the labeled heads are highly oriented in rigor, but in relaxation they have at least 90 degrees (Gaussian full width) of axial disorder, centered at an angle approximately equal to that in rigor. Spectra obtained in isometric contraction are fit quite well by assuming that 79 +/- 2% of the myosin heads are disordered as in relaxation, whereas the remaining 21 +/- 2% have the same orientation as in rigor. Computer-simulated spectra confirm that there is no significant population (> 5%) of heads having a distinct orientation substantially different (> 10 degrees) from that in rigor, and even the large disordered population of heads has a mean orientation that is similar to that in rigor. Because this spin label reports axial head rotations directly, these results suggest strongly that the catalytic domain of myosin does not undergo a transition between two distinct axial orientations during force generation. Saturation transfer EPR shows that the rotational disorder is dynamic on the microsecond time scale in both relaxation and contraction. These results are consistent with models of contraction involving 1) a transition from a dynamically disordered preforce state to an ordered (rigorlike) force-generating state and/or 2) domain movements within the myosin head that do not change the axial orientation of the SH1-containing catalytic domain relative to actin. 相似文献
17.
Tension responses due to small, rapid length changes (completed within 40 microseconds) were obtained from skinned single frog muscle fiber segments (4-10 mm length) incubated in relaxing and rigor solutions at various ionic strengths. The first 2 ms of these responses can be described with a linear model in which the fiber is regarded as a rod, composed of infinitesimally small, identical segments, containing one undamped elastic element and two or three damped elastic elements and a mass in series. Rigor stiffness changed less than 10% in a limited range, 40-160 mM, of ionic strength conditions. Equatorial x-ray diffraction patterns show a similar finding for the filament spacing and intensity ratio I(11)/I(10). Relaxed fibers became stiffer under low ionic strength conditions. This stiffness increment can be correlated with a decreasing filament spacing and (an increased number of) weakly attached cross-bridges. Under low ionic strength conditions an additional recovery (1 ms time constant) became noticeable which might reflect characteristics of weakly attached cross-bridges. 相似文献
18.
We have used electron paramagnetic resonance spectroscopy (EPR) to investigate the orientational distribution of actin in thin filaments of glycerinated muscle fibers in rigor, relaxation, and contraction. A spin-labeled derivative of a mushroom toxin, phalloidin (PHSL), was bound to actin in the muscle fibers (PHSL–fibers). The EPR spectrum of unoriented PHSL–labeled myofibrils consisted of three sharp lines with a splitting between the outer extrema (2T) of 42.8 ± 0.1 G, indicating that the spin labels undergo restricted nanosecond rotational motion within an estimated halfcone angle of 76°. When the PHSL–fiber bundle was oriented parallel to the magnetic field, the splitting between the zero-crossing points (2T′) was 42.7 ± 0.1 G. When the fiber bundle was perpendicular to the magnetic field, 2T′ decreased to 34.5 ± 0.2 G. This anisotropy shows that the motion of the probe is restricted in orientation by its binding site on actin, so that the EPR spectrum of PHSL–fiber bundles would be sensitive to small changes in the mean axial orientation of the PHSL–actin interface. No differences in the EPR spectra were observed in fibers during rigor, relaxation, or contraction, indicating that the mean axial orientation of the PHSL binding site changes by less than 5°, and that the amplitude of nanosecond probe rotational motion, which should be quite sensitive to the local environment of the phalloidin, changes by no more than 1°. These results rule out large changes in the overall geometry of the actin filament and in the local conformation of actin near the phalloidin binding site during the generation of isometric tension in muscle fibers. © 1993 Wiley-Liss, Inc. 相似文献
19.
Ushakov DS Caorsi V Ibanez-Garcia D Manning HB Konitsiotis AD West TG Dunsby C French PM Ferenczi MA 《The Journal of biological chemistry》2011,286(1):842-850
We applied fluorescence lifetime imaging microscopy to map the microenvironment of the myosin essential light chain (ELC) in permeabilized skeletal muscle fibers. Four ELC mutants containing a single cysteine residue at different positions in the C-terminal half of the protein (ELC-127, ELC-142, ELC-160, and ELC-180) were generated by site-directed mutagenesis, labeled with 7-diethylamino-3-((((2-iodoacetamido)ethyl)amino)carbonyl)coumarin, and introduced into permeabilized rabbit psoas fibers. Binding to the myosin heavy chain was associated with a large conformational change in the ELC. When the fibers were moved from relaxation to rigor, the fluorescence lifetime increased for all label positions. However, when 1% stretch was applied to the rigor fibers, the lifetime decreased for ELC-127 and ELC-180 but did not change for ELC-142 and ELC-160. The differential change of fluorescence lifetime demonstrates the shift in position of the C-terminal domain of ELC with respect to the heavy chain and reveals specific locations in the lever arm region sensitive to the mechanical strain propagating from the actin-binding site to the lever arm. 相似文献