共查询到20条相似文献,搜索用时 0 毫秒
1.
Swank DM 《Methods (San Diego, Calif.)》2012,56(1):69-77
The genetic advantages of Drosophila make it a very appealing choice for investigating muscle development, muscle physiology and muscle protein structure and function. To take full advantage of this model organism, it has been vital to develop isolated Drosophila muscle preparations that can be mechanically evaluated. We describe techniques to isolate, prepare and mechanically analyze skinned muscle fibers from two Drosophila muscle types, the indirect flight muscle and the jump muscle. The function of the indirect flight muscle is similar to vertebrate cardiac muscle, to generate power in an oscillatory manner. The indirect flight muscle is ideal for evaluating the influence of protein mutations on muscle and cross-bridge stiffness, oscillatory power, and deriving cross-bridge rate constants. Jump muscle physiology and structure are more similar to skeletal vertebrate muscle than indirect flight muscle, and it is ideal for measuring maximum shortening velocity, force-velocity characteristics and steady-state power generation. 相似文献
2.
Development of the indirect flight muscles of Drosophila. 总被引:6,自引:0,他引:6
We have followed the pupal development of the indirect flight muscles (IFMs) of Drosophila melanogaster. At the onset of metamorphosis larval muscles start to histolyze, with the exception of a specific set of thoracic muscles. Myoblasts surround these persisting larval muscles and begin the formation of one group of adult indirect flight muscles, the dorsal longitudinal muscles. We show that the other group of indirect flight muscles, the dorsoventral muscles, develops simultaneously but without the use of larval templates. By morphological criteria and by patterns of specific gene expression, our experiments define events in IFM development. 相似文献
3.
4.
5.
6.
It is possible to monitor the electrical activity of the motor neurons of Drosophila by recording the electrical activity of the muscle fibers. We have found that it is possible to specify the location of the subcuticular terminations and to describe the orientation within the thorax for the individual muscle fibers, because of the large size of the fibers and because the surface anatomy of Drosophila is known in detail. A map has been made to indicate the location of the muscle fibers with respect to superficial landmarks. The importance of the stereotaxic map for physiological studies is discussed. 相似文献
7.
8.
Actin gene mutations in Drosophila; heat shock activation in the indirect flight muscles 总被引:10,自引:3,他引:10
下载免费PDF全文

We have identified four mutations affecting the actin III isoform in the indirect flight muscles (IFM) of Drosophila. One mutation does not produce any protein product, and three direct the synthesis of electrophoretic variants of actin. Complementation tests and recombination mapping indicate that all mutations are alleles of an actin gene at chromosomal band 88F (act88F gene). The effect of these mutations is restricted to the IFM. We conclude that the act88F gene is expressed only in the IFM to encode actin III, which is its major isoform. In two of the actin mutants, heat shock proteins are constitutively expressed in the IFM. Genetic evidence strongly suggest that this anomaly is primarily caused by the mutations in the act88F structural gene. 相似文献
9.
10.
11.
Ultimate causes of phenotypic plasticity in visual appearance are frequently related to increasing the degree of crypsis in a way specific to the environment. The cues used to elicit such plastic responses may be both direct (i.e. straightforward background matching) as well as indirect. In the latter case, cues other than the visual signals from of the environment are used to predict the phenotype best corresponding to the particular situation. On the basis of a series of laboratory experiments we show that the remarkable variability in the visual appearance of the larvae of the geometrid moth Ematurga atomaria, though genetically based in part, involves a substantial environmental component. Using multiple correspondence analysis, we transformed the multidimensional variation in colour and pattern into two dimensions interpretable as patterning and darkness. Plastic changes in the darkness of the larvae were elicited by direct cues: the larvae were darker when reared on dark host‐plants. Host‐specific degree of patterning was also induced in absolute darkness which indicates the use of an indirect cue. This was unexpected because the study species is broadly polyphagous, and thus not likely to have evolved adaptations specific to particular host‐plant species. Indeed, the larvae of E. atomaria originating from geographic populations using different host‐plants showed analogous plastic responses which indicates that the link between the indirect cue and visual appearance of the host needs not to be specific to plant species. In an additional experiment, we showed that surface roughness is a likely candidate to serve as the proximate cue for determination of some pattern elements, a case not reported for insect larvae earlier. 相似文献
12.
The recently discovered LIM motif is found in a set of homeodomain-containing proteins thought to mediate the generation of particular cell types. Of the four LIM domain family members described to date, mec-3 and lin-11 determine cell lineages in C. elegans. Isl-1 and Xlim-1 may play similar roles in vertebrates. We have identified a Drosophila member of this class, the product of the apterous (ap) gene. During embryogenesis, ap is expressed in a small subset of fusing mesodermal precursors that give rise to 6 muscles in each abdominal hemisegment and in 5 neurons within each corresponding CNS hemisegment. Lack of ap function results in loss of ap-expressing muscles, while misexpression of ap using a heterologous promoter produces ectopic muscles. 相似文献
13.
14.
15.
Apterous is a LIM-homeodomain protein that confers dorsal compartment identity in Drosophila wing development. Apterous activity requires formation of a complex with a co-factor, Chip/dLDB. Apterous activity is regulated during wing development by dLMO, which competes with Apterous for complex formation. Here, we present evidence that complex formation between Apterous, Chip and DNA stabilizes Apterous protein in vivo. We also report that a difference in the ability of Chip to bind the LIM domains of Apterous and dLMO contributes to regulation of activity levels in vivo. 相似文献
16.
Kenneth C. Welch Jr. Chris C. W. Chen 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2014,184(8):945-959
In most vertebrates, uptake and oxidation of circulating sugars by locomotor muscles rises with increasing exercise intensity. However, uptake rate by muscle plateaus at moderate aerobic exercise intensities and intracellular fuels dominate at oxygen consumption rates of 50 % of maximum or more. Further, uptake and oxidation of circulating fructose by muscle is negligible. In contrast, hummingbirds and nectar bats are capable of fueling expensive hovering flight exclusively, or nearly completely, with dietary sugar. In addition, hummingbirds and nectar bats appear capable of fueling hovering flight completely with fructose. Three crucial steps are believed to be rate limiting to muscle uptake of circulating glucose or fructose in vertebrates: (1) delivery to muscle; (2) transport into muscle through glucose transporter proteins (GLUTs); and (3) phosphorylation of glucose by hexokinase (HK) within the muscle. In this review, we summarize what is known about the functional upregulation of exogenous sugar flux at each of these steps in hummingbirds and nectar bats. High cardiac output, capillary density, and blood sugar levels in hummingbirds and bats enhance sugar delivery to muscles (step 1). Hummingbird and nectar bat flight muscle fibers have relatively small cross-sectional areas and thus relatively high surface areas across which transport can occur (step 2). Maximum HK activities in each species are enough for carbohydrate flux through glycolysis to satisfy 100 % of hovering oxidative demand (step 3). However, qualitative patterns of GLUT expression in the muscle (step 2) raise more questions than they answer regarding sugar transport in hummingbirds and suggest major differences in the regulation of sugar flux compared to nectar bats. Behavioral and physiological similarities among hummingbirds, nectar bats, and other vertebrates suggest enhanced capacities for exogenous fuel use during exercise may be more wide spread than previously appreciated. Further, how the capacity for uptake and phosphorylation of circulating fructose is enhanced remains a tantalizing unknown. 相似文献
17.
Akt-PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation
下载免费PDF全文

We studied the spatiotemporal regulation of Akt (also called protein kinase B), phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] by using probes based on the principle of fluorescence resonance energy transfer. On epidermal growth factor (EGF) stimulation, the amount of PtdIns(3,4,5)P3 was increased diffusely in the plasma membrane, whereas that of PtdIns(3,4)P2 was increased more in the nascent lamellipodia than in the plasma membrane of the central region. The distribution and time course of Akt activation were similar to that of increased PtdIns(3,4)P2 levels, which were most prominent in the nascent lamellipodia. Moreover, we found that upon EGF stimulation 3-phosphoinositide-dependent protein kinase-1 (PDK1) was also recruited to nascent lamellipodia in an Akt-dependent manner. Because PDK1 is known to activate Ral GTPase and because Ral is required for EGF-induced lamellipodial protrusion, we speculated that the PDK1-Akt complex may be indispensable for the induction of lamellipodia. In agreement with this idea, EGF-induced lamellipodia formation was promoted by the overexpression of Akt and inhibited by an Akt inhibitor or a Ral-binding domain of Sec5. These results identified the Akt-PDK1 complex as an upstream positive regulator of Ral GTPase in the induction of lamellipodial protrusion. 相似文献
18.
19.
Roberts G 《Proceedings. Biological sciences / The Royal Society》2008,275(1631):173-179
Indirect reciprocity (IR) occurs when individuals help those who help others. It is important as a potential explanation for why people might develop cooperative reputations. However, previous models of IR are based on the assumption that individuals never meet again. Yet humans and other animals often interact repeatedly within groups, thereby violating the fundamental basis of these models. Whenever re-meeting can occur, discriminating reciprocators can decide whether to help those who helped others (IR) or those who helped them (direct reciprocity, DR). Here I used simulation models to investigate the conditions in which we can expect the different forms of reciprocity to predominate. I show that IR through image scoring becomes unstable with respect to DR by experience scoring as the probability of re-meeting increases. However, using the standing strategy, which takes into account the context of observed defections, IR can be stable with respect to DR even when individuals interact with few partners many times. The findings are important in showing that IR cannot explain a concern for reputation in typical societies unless reputations provide as reliable a guide to cooperative behaviour as does experience. 相似文献
20.
Lebart-Pedebas MC 《Tissue & cell》1990,22(2):199-211
The origin and development of the dorso-ventral flight muscles (DVM) was studied by light and electron microscopy in Chironomus (Diptera; Nematocera). Chironomus was chosen because unlike Drosophila, its flight muscles develop during the last larval instar, before the lytic process of metamorphosis. Ten fibrillar DVM were shown to develop from a larval muscle associated with myoblasts. This muscle is connected to the imaginal leg discso that its cavity communicates with the adepithelial cells present in the disc; but no migration of myoblasts seems to take place from the imaginal leg disc towards the larval muscle or vice versa. At the beginning of the last larval instar, the myoblasts were always present together with the nerves in the larval muscle. In addition, large larval muscle cells incorporated to the imaginal discs were observed to border on the area occupied by adepithelial cells, and are probably involved in the formation of 4 other fibrillar DVM with adepithelial cells. Three factors seem to determine the number of DVM fibres: the initial number of larval fibres in the Anlage, the fusions of myoblasts with these larval fibres and the number of motor axons in the Anlage. The extrapolation of these observations to Drosophila, a higher dipteran, is discussed. 相似文献