首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of metallochromic Ca indicators in skeletal muscle   总被引:1,自引:0,他引:1  
J Vergara  M Delay 《Cell calcium》1985,6(1-2):119-132
Absorbance signals recorded with metallochromic indicators in skeletal muscle fibers show rapid time courses that probably closely track the fast kinetic process of Ca++ release and retrapping by the sarcoplasmic reticulum. However, the formation of more than one complex in cuvette calibrations, both for Arsenazo III (ArIII) and Antipyrylazo III (ApIII), suggest that care needs to be taken in the deconvolution of in vivo absorbance signals. Since the kinetic rate constants have not yet been obtained for these probes, attempts to deconvolute absorbance signals should be considered approximate. The evidence suggesting that more than one complex is formed during a skeletal muscle transient with ArIII is more compelling than for the case of ApIII. The differences between the ArIII and ApIII signals may not be readily explained assuming 1:1 dye:Ca complexation and kinetic differences between the probes. Competition for Ca++ with cell Ca buffers and/or multiple complex formation by at least one of these probes needs to be invoked. Based on a simple model to simulate the behavior of the Ca signals in muscle, it may be suggested that an ApIII-like probe would more closely track pCa changes in the fiber than would an ArIII-like probe, which would show more interference with intracellular buffers; an even higher affinity probe would tend to sense the total release of Ca by the SR.  相似文献   

2.
3.
《Cell calcium》2016,59(6):638-648
Localized subcellular changes in Ca2+ serve as important cellular signaling elements, regulating processes as diverse as neuronal excitability and gene expression. Studies of cellular Ca2+ signaling have been greatly facilitated by the availability of fluorescent Ca2+ indicators. The respective merits of different indicators to monitor bulk changes in cellular Ca2+ levels have been widely evaluated, but a comprehensive comparison for their use in detecting and analyzing local, subcellular Ca2+ signals is lacking. Here, we evaluated several fluorescent Ca2+ indicators in the context of local Ca2+ signals (puffs) evoked by inositol 1,4,5-trisphosphate (IP3) in cultured human neuroblastoma SH-SY5Y cells, using high-speed video-microscopy. Altogether, nine synthetic Ca2+ dyes (Fluo-4, Fluo-8, Fluo-8 high affinity, Fluo-8 low affinity, Oregon Green BAPTA-1, Cal-520, Rhod-4, Asante Calcium Red, and X-Rhod-1) and three genetically-encoded Ca2+-indicators (GCaMP6-slow, -medium and -fast variants) were tested; criteria include the magnitude, kinetics, signal-to-noise ratio and detection efficiency of local Ca2+ puffs. Among these, we conclude that Cal-520 is the optimal indicator for detecting and faithfully tracking local events; that Rhod-4 is the red-emitting indicator of choice; and that none of the GCaMP6 variants are well suited for imaging subcellular Ca2+ signals.  相似文献   

4.
The analytical method described in the preceding article was applied to spectrophotometric Ca2+-titrations of the metallochromic indicator arsenazo III (Ar). At various reactant concentrations it was determined that Ar forms 1:1,1:2 and 2 : 1 complexes with calcium. The equilibrium constants and extinction coefficients at 602 nm were determined. Corrected to zero ionic strength at 293 K and pH 7.0, the reactions Ca + Ar = CaAr, CaAr + Ar = CaAr2 and CaAr + Ca = Ca2Ar are associated with dissociation equilibrium constants k(11) = 1.6 x 10(-6)M, K12 = 3.2 x 10(-4)M and K21 = 5.8 x 10(-3)M. respectively. The extinction coefficient of unbound indicator is (602) = 9.6 (+/-0.3) x 10(3) cm(-1) M(-1). Arscnazo III complexes with monovalent ions like Na+ and K+ : at zero ionic strength, the dissociation constant of the Na+-Ar complex is about 0.1 M.  相似文献   

5.
The Ca2+-activated photoproteins aequorin and obelin are capable of detecting rapid changes in free Ca2+ over the range 10nM-100uM. Whilst they have been used to quantify free Ca transients in giant cells for some time, their use in small mammalian cells has been restricted because of the difficulty of incorporating them into live cells without impairment of cell function. We have developed three methods for incorporating photoproteins into small cells (a) reversible cell swelling (b) membrane fusion and (c) intracellular release from pinocytotic vesicles. Formation of the membrane attack complex of complement (C5b6789), via a specific cell surface antibody to activate complement, causes a rapid increase in cytoplasmic Ca2+ detectable within 5-10 s. It provides a specific method for quantifying cytoplasmic photoprotein. As a result new insights into the role of intracellular Ca2+ in cell physiology and pathology have been established.  相似文献   

6.
7.
The use of high-affinity fluorescent probes for monitoring intracellular free Ca2+ in cardiac muscle is now widespread. We have investigated the consequences of introducing intracellular buffers with the properties of Fura-2 or Indo-1 on the action potential, Ca2+ transient and contractile activity of the myocardium. Our theoretical results suggest that, at the high intracellular concentrations of these fluorescent probes used on occasion to improve the signal-to-noise ratio of the emitted fluorescence, modulation of action potential profile and attenuation of the amplitudes of the Ca2+ transient and contraction can occur, together with subtle changes in the kinetics of these events.  相似文献   

8.
Antipyrylazo III, a "middle range" Ca2+ metallochromic indicator   总被引:8,自引:0,他引:8  
A Scarpa  F J Brinley  G Dubyak 《Biochemistry》1978,17(8):1378-1386
  相似文献   

9.
10.
11.
Stoichiometries, equilibrium constants and optical extinction coefficients of calcium-antipyrylazo III (An) complexing are determined with the analytical method described in article I of this series. Spcctrophotometric Ca titrations of An at the wavelengths 595 and 710 nm indicate overall dissociation equilibrium constants for the complexes CaAn, CaAn2 and Ca2An to be 4.5 × 10?4 M, 1.1 × 10?8 M2 and 1.5× 10?6 M2, respectively, extrapolated to zero ionic strength. Ca titrations of solutions containing An plus acetylcholine receptor protein give clear evidence that An binds to the protein to a large extent in the presence of Ca2+; furthermore, addition of acetylcholine results in release of protein-bound Ca and An. This is the first reported indication that antipyrylazo III binds to biological material and questions the usefulness of this dye as a Ca indicator in biological systems.  相似文献   

12.
13.
A transient increase in intracellular Ca2+ is the universal signal for egg activation at fertilization. Eggs acquire the ability to mount the specialized fertilization-specific Ca2+ signal during oocyte maturation. The first Ca2+ transient following sperm entry in vertebrate eggs has a slow rising phase followed by a sustained plateau. The molecular determinants of the sustained plateau are poorly understood. We have recently shown that a critical determinant of Ca2+ signaling differentiation during oocyte maturation is internalization of the plasma membrane calcium ATPase (PMCA). PMCA internalization is representative of endocytosis of several integral membrane proteins during oocyte maturation, a requisite process for early embryogenesis. Here we investigate the mechanisms regulating PMCA internalization. To track PMCA trafficking in live cells we cloned a full-length cDNA of Xenopus PMCA1, and show that GFP-tagged PMCA traffics in a similar fashion to endogenous PMCA. Functional data show that MPF activation during oocyte maturation is required for full PMCA internalization. Pharmacological and co-localization studies argue that PMCA is internalized through a lipid raft endocytic pathway. Deletion analysis reveal a requirement for the N-terminal cytoplasmic domain for efficient internalization. Together these studies define the mechanistic requirements for PMCA internalization during oocyte maturation.  相似文献   

14.
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.  相似文献   

15.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

16.
The Ca2+ sensitivity of large conductance Ca2+- and voltage-activated K+ channels (BKV,Ca) has been determined in situ in freshly isolated myocytes from the guinea pig urinary bladder. In this study, in situ denotes that BKV,Ca channel activity was recorded without removing the channels from the cell. By combining patch clamp recording in the cell-attached configuration and microfluorometry of fura-2, we were able to correlate BKV,Ca channel activity with changes in cytoplasmic intracellular [Ca2+] ([Ca2+]i). The latter were induced by ionomycin, an electroneutral Ca2+ ionophore. At 0 mV, the Hill coefficient (nH) and the [Ca2+]i to attain half of the maximal BKV,Ca channel activity (Ca50) were 8 and 1 microM, respectively. The data suggest that this large Hill number was not a consequence of the difference between the near-membrane [Ca2+] ([Ca2+]s) and the bulk [Ca2+]i, indicated by fura-2. High Hill numbers in the activation by Ca2+ of BKV,Ca channels have been seen by different groups (e.g., filled squares in Fig. 4 of Silberberg, S. D., A. Lagrutta, J. P. Adelman, and K. L. Magleby. 1996. Biophys. J. 70:2640-2651). However, such high nH has always been considered a peculiarity rather than the rule. This work shows that a high Ca2+ cooperativity is the normal situation for BKV,Ca channels in myocytes from guinea pig urinary bladder. Furthermore, the Ca50 did not display any significant variation among different channels or cells. It was also evident that BKV,Ca channel activity could decrease in elevated [Ca2+]i, either partially or completely. This work implies that the complete activation of BKV,Ca channels occurs with a smaller increment in [Ca2+]s than previously expected from in vitro characterization of the Ca2+ sensitivity of these channels. Additionally, it appears that the activity of BKV,Ca channels in situ does not strictly follow changes in near-membrane [Ca2+].  相似文献   

17.
Mammalian Na+/Ca2+ exchangers are members of three branches of a much larger family of transport proteins [the CaCA (Ca2+/cation antiporter) superfamily] whose main role is to provide control of Ca2+ flux across the plasma membranes or intracellular compartments. Since cytosolic levels of Ca2+ are much lower than those found extracellularly or in sequestered stores, the major function of Na+/Ca2+ exchangers is to extrude Ca2+ from the cytoplasm. The exchangers are, however, fully reversible and thus, under special conditions of subcellular localization and compartmentalized ion gradients, Na+/Ca2+ exchangers may allow Ca2+ entry and may play more specialized roles in Ca2+ movement between compartments. The NCX (Na+/Ca2+ exchanger) [SLC (solute carrier) 8] branch of Na+/Ca2+ exchangers comprises three members: NCX1 has been most extensively studied, and is broadly expressed with particular abundance in heart, brain and kidney, NCX2 is expressed in brain, and NCX3 is expressed in brain and skeletal muscle. The NCX proteins subserve a variety of roles, depending upon the site of expression. These include cardiac excitation-contraction coupling, neuronal signalling and Ca2+ reabsorption in the kidney. The NCKX (Na2+/Ca2+-K+ exchanger) (SLC24) branch of Na+/Ca2+ exchangers transport K+ and Ca2+ in exchange for Na+, and comprises five members: NCKX1 is expressed in retinal rod photoreceptors, NCKX2 is expressed in cone photoreceptors and in neurons throughout the brain, NCKX3 and NCKX4 are abundant in brain, but have a broader tissue distribution, and NCKX5 is expressed in skin, retinal epithelium and brain. The NCKX proteins probably play a particularly prominent role in regulating Ca2+ flux in environments which experience wide and frequent fluctuations in Na+ concentration. Until recently, the range of functions that NCKX proteins play was generally underappreciated. This situation is now changing rapidly as evidence emerges for roles including photoreceptor adaptation, synaptic plasticity and skin pigmentation. The CCX (Ca2+/cation exchanger) branch has only one mammalian member, NCKX6 or NCLX (Na+/Ca2+-Li+ exchanger), whose physiological function remains unclear, despite a broad pattern of expression.  相似文献   

18.
19.
The pyruvate, NAD(+)-isocitrate and 2-oxoglutarate dehydrogenases are key regulatory enzymes in intramitochondrial oxidative metabolism in mammalian tissues, and can all be activated by increases in Ca2+ in the micromolar range. There is now mounting evidence that hormones and other stimuli which act by increasing cytosolic Ca2+ also, as a result, cause increases in mitochondrial matrix Ca2+ and hence activation of these enzymes, suggesting that the primary physiological function of mitochondrial Ca2(+)-transport is to be involved in this relay mechanism. This may also explain how in such circumstances rates of ATP production may be increased to meet the greater demand, but without any decreases in ATP/ADP occurring.  相似文献   

20.
The effects of tetrandrine (TET), a Ca2+ antagonist of bis-benzylisoquinoline alkaloid origin, on cultured single bovine pulmonary artery endothelial cells were examined using fluorescence ratio imaging and whole-cell attached patch-clamp techniques. Thapsigargin (TSG, 100 nM), a selective endoplasmic reticulum Ca2+-ATPase pump inhibitor known to induce the release of nitric oxide (NO) from vascular endothelial cells via a Ca2+-dependent manner, caused a rapid elevation of cytosolic Ca2+ concentration, which was inhibited by 30 microM TET. In whole-cell patch-clamp study using the same vascular endothelial cells, addition of 100 nM TSG caused a significant enhancement of depolarization-evoked Ca2+-dependent, outward K+ currents, which could also be abolished by 30 microM TET. The present results demonstrate directly that TET, in addition to its known inhibitory effects on vascular smooth muscle by virtue of its Ca2+ antagonistic actions, also inhibits NO production by the endothelial cells through blockade of Ca2+ release-activated Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号