首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The effect of the hepatocarcinogen 3′-methyl-4-dimethylaminoazobenzene on α-fetoprotein (AFP) and albumin gene expression in rat liver was studied. Serum concentrations of AFP and albumin were measured. Amounts of AFP mRNA and albumin mRNA in rat livers were determined by hybridization of total cytoplasmic RNAs to their cDNAs. Dramatic increases in serum AFP concentrations coincided with increases in AFP biosynthesis and amount of AFP mRNA in livers of carcinogen-treated rats. In contrast, no or little change in albumin mRNA concentration was found in livers of rats treated with 3′-methyl-4-dimethylaminoazobenzene. Concomitantly, there was little change in liver albumin biosynthesis or serum albumin concentrations during hepatocarcinogenesis.  相似文献   

7.
8.
9.
10.
11.
Connective tissue growth factor (CTGF) is a cysteine-rich peptide that exhibits platelet-derived growth factor (PDGF)-like biological and immunological activities. CTGF is a member of a family of peptides that include serum-induced immediate early gene products, a v-src-induced peptide, and a putative avian transforming gene, nov. In the present study, we demonstrate that human foreskin fibroblasts produce high levels of CTGF mRNA and protein after activation with transforming growth factor beta (TGF-beta) but not other growth factors including PDGF, epidermal growth factor, and basic fibroblast growth factor. Because of the high level selective induction of CTGF by TGF-beta, it appears that CTGF is a major autocrine growth factor produced by TGF-beta-treated human skin fibroblasts. Cycloheximide did not block the large TGF-beta stimulation of CTGF gene expression, indicating that it is directly regulated by TGF-beta. Similar regulatory mechanisms appear to function in vivo during wound repair where there is a coordinate expression of TGF-beta 1 before CTGF in regenerating tissue, suggesting a cascade process for control of tissue regeneration and repair.  相似文献   

12.
Hepatocyte growth factor (HGF) is a potent mitogen for hepatocytes; however, in certain human hepatoma cell lines, the growth is inhibited by HGF. In the present study, the effect of HGF on the alpha-fetoprotein (AFP) gene expression was analyzed in PLC/PRF/5 human hepatoma cells. HGF did not inhibit cell proliferation, but dose-dependently suppressed AFP secretion at the concentrations of 10 ng/ml or less. By Northern blot analysis, the levels of AFP mRNA were suppressed by HGF, whereas the levels of beta-actin mRNA used as a control did not show any significant changes. In the transient chloramphenicol acetyltransferase plasmid transfection assays, the AFP promoter activity was repressed by HGF, in contrast, the AFP enhancer activity was not affected by HGF. These results suggest that the AFP gene expression is down-regulated by HGF through the suppression of its promoter activity in human hepatoma cells.  相似文献   

13.
14.
Transforming growth factor-beta (TGF-beta) has been reported to be involved in the pathogenesis of cardiovascular proliferative diseases such as hypertensive vascular disease, atherosclerosis, and arterial restenosis after angioplasty. We designed a 38-base DNA-RNA chimeric hammerhead ribozyme to cleave human TGF-beta1 mRNA as a gene therapy for human arterial proliferative diseases. In the presence of MgCl(2), synthetic ribozyme to human TGF-beta1 mRNA cleaved the synthetic target RNA into two RNA fragments of predicted size. A control mismatch ribozyme, with one different base in the catalytic loop region, was inactive. DNA-RNA chimeric ribozyme (0. 01-1.0 microM) significantly inhibited angiotensin II (Ang II)-stimulated DNA synthesis in a dose-dependent manner in human vascular smooth muscle cells (VSMC). The mismatch ribozyme did not affect Ang II-stimulated DNA synthesis in the cells. DNA-RNA chimeric ribozyme (1.0 microM) inhibited the proliferation of human VSMC in the presence of Ang II. DNA-RNA chimeric ribozyme (1.0 microM) significantly inhibited Ang II-stimulated TGF-beta1 mRNA and protein expression in human VSMC. These results indicate that the designed DNA-RNA chimeric hammerhead ribozyme targeted to human TGF-beta1 mRNA can effectively and potentially inhibit growth of human VSMC by cleaving the TGF-beta1 mRNA. This finding suggests that this ribozyme will be useful in the gene therapy of arterial proliferative diseases.  相似文献   

15.
Albumin mRNA was isolated and purified from rat liver polysomes by a combination of immunoprecipitation of specific polysomes, poly(U)-Sepharose 4B chromatography, and fractionation of the resulting poly(A)-containing RNA on a sucrose gradient. alpha-Fetoprotein (AFP) mRNA was isolated from Morris hepatoma 7777 by a similar procedure. The purity of the mRNA preparations was determined by analytical gel electrophoresis under denaturing conditions, analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the polypeptides synthesized in a wheat germ cell-free system, and the kinetics of hybridization to cDNA transcribed from albumin mRNA and AFP mRNA. The albumin mRNA possessed a chain length of approximately 2265 nucleotides and the AFP mRNA possesed a length of approximately 2235 nucleotides when examined under stringent denaturing conditions on agarose gels containing 10 mM methylmercury hydroxide. Analysis of poly(A) content by a hybridization assay with [3H]poly(U) revealed the presence in albumin mRNA of a poly(A) region containing approximately 100 adenosine residues. The AFP mRNA preparation was found to contain an average poly(A) tract of approximately 190 bases. Thus, albumin mRNA appears to contain approximately 330 untranslated nucleotides, and AFP mRNA appears to contain a similar number (approximately 285) of noncoding, nonpoly(A) bases. The purified albumin and AFP mRNA's were used as templates for synthesis of full-length cDNA hybridization probes. Both of the probes selectively hybridized to their templates with kinetics expected for single RNA species the sizes of albumin and AFP mRNA. ROt analysis was used to quantitate albumin and AFP mRNA sequences during normal liver postnatal development and liver oncogenesis. The number of polysomal AFP mRNA molecules per liver was found to drastically decrease during the first weeks of postnatal life, concomitant with a decline in the AFP synthetic capacity of the livers and in the serum concentrations of AFP. During this period, the concentration of albumin mRNA molecules per cell in the liver remained at high, approximately constant levels. In Morris hepatoma 7777, the concentration of AFP-specifying sequences was at least 10(3)-fold higher than that found in normal adult liver, whereas the content of albumin nRNA was four- to five-fold lower. These changes in concentration of albumin and AFP mRNA sequences closely correlated with a parallel variation in the specific protein synthetic capacity of the tissues.  相似文献   

16.
Genome-wide gene expression was comparatively investigated in early-passage rheumatoid arthritis (RA) and osteoarthritis (OA) synovial fibroblasts (SFBs; n = 6 each) using oligonucleotide microarrays; mRNA/protein data were validated by quantitative PCR (qPCR) and western blotting and immunohistochemistry, respectively. Gene set enrichment analysis (GSEA) of the microarray data suggested constitutive upregulation of components of the transforming growth factor (TGF)-beta pathway in RA SFBs, with 2 hits in the top 30 regulated pathways. The growth factor TGF-beta1, its receptor TGFBR1, the TGF-beta binding proteins LTBP1/2, the TGF-beta-releasing thrombospondin 1 (THBS1), the negative effector SkiL, and the smad-associated molecule SARA were upregulated in RA SFBs compared to OA SFBs, whereas TGF-beta2 was downregulated. Upregulation of TGF-beta1 and THBS1 mRNA (both positively correlated with clinical markers of disease activity/severity) and downregulation of TGF-beta2 mRNA in RA SFBs were confirmed by qPCR. TGFBR1 mRNA (only numerically upregulated in RA SFBs) and SkiL mRNA were not differentially expressed. At the protein level, TGF-beta1 showed a slightly higher expression, and the signal-transducing TGFBR1 and the TGF-beta-activating THBS1 a significantly higher expression in RA SFBs than in OA SFBs. Consistent with the upregulated TGF-beta pathway in RA SFBs, stimulation with TGF-beta1 resulted in a significantly enhanced expression of matrix-metalloproteinase (MMP)-11 mRNA and protein in RA SFBs, but not in OA SFBs. In conclusion, RA SFBs show broad, constitutive alterations of the TGF-beta pathway. The abundance of TGF-beta, in conjunction with an augmented mRNA and/or protein expression of TGF-beta-releasing THBS1 and TGFBR1, suggests a pathogenetic role of TGF-beta-induced effects on SFBs in RA, for example, the augmentation of MMP-mediated matrix degradation/remodeling.  相似文献   

17.
18.
Asthma and chronic obstructive pulmonary disease (COPD) are characterized by chronic airway inflammation and major structural lung tissue changes including increased extracellular matrix (ECM) deposition. Inhaled corticosteroids and long-acting beta(2)-agonists (LABA) are the basic treatment for both diseases, but their effect on airway remodeling remains unclear. In this study, we investigated the effect of corticosteroids and LABA, alone or in combination, on total ECM and collagen deposition, gene expression, cell proliferation, and IL-6, IL-8, and TGF-beta(1) levels by primary human lung fibroblasts. In our model, fibroblasts in 0.3% albumin represented a non-inflammatory condition and stimulation with 5% FCS and/or TGF-beta(1) mimicked an inflammatory environment with activation of tissue repair. FCS (5%) increased total ECM, collagen deposition, cell proliferation, and IL-6, IL-8, and TGF-beta(1) levels. In 0.3% albumin, corticosteroids reduced total ECM and collagen deposition, involving the glucocorticoid receptor (GR) and downregulation of collagen, heat shock protein 47 (Hsp47), and Fli1 mRNA expression. In 5% FCS, corticosteroids increased ECM deposition, involving upregulation of COL4A1 and CTGF mRNA expression. LABA reduced total ECM and collagen deposition under all conditions partly via the beta(2)-adrenergic receptor. In combination, the drugs had an additive effect in the presence or absence of TGF-beta(1) further decreasing ECM deposition in 0.3% albumin whereas counteracting each other in 5% FCS. These data suggest that the effect of corticosteroids, but not of LABA, on ECM deposition by fibroblasts is altered by serum. These findings imply that as soon as airway inflammation is resolved, long-term treatment with combined drugs may beneficially reduce pathological tissue remodeling.  相似文献   

19.
Gene expression of vascular endothelial growth factor (VEGF), and to a lesser extent of transforming growth factor-beta(1) (TGF-beta(1)) and basic fibroblast growth factor (bFGF), has been found to increase in rat skeletal muscle after a single exercise bout. In addition, acute hypoxia augments the VEGF mRNA response to exercise, which suggests that, if VEGF is important in muscle angiogenesis, hypoxic training might produce greater capillary growth than normoxic training. Therefore, we examined the effects of exercise training (treadmill running at the same absolute intensity) in normoxia and hypoxia (inspired O(2) fraction = 0.12) on rat skeletal muscle capillarity and on resting and postexercise gene expression of VEGF, its major receptors (flt-1 and flk-1), TGF-beta(1), and bFGF. Normoxic training did not alter basal or exercise-induced VEGF mRNA levels but produced a modest twofold increase in bFGF mRNA (P < 0.05). Rats trained in hypoxia exhibited an attenuated VEGF mRNA response to exercise (1.8-fold compared 3.4-fold with normoxic training; P < 0.05), absent TGF-beta(1) and flt-1 mRNA responses to exercise, and an approximately threefold (P < 0.05) decrease in bFGF mRNA levels. flk-1 mRNA levels were not significantly altered by either normoxic or hypoxic training. An increase in skeletal muscle capillarity was observed only in hypoxically trained rats. These data show that, whereas training in hypoxia potentiates the adaptive angiogenic response of skeletal muscle to a given absolute intensity of exercise, this was not evident in the gene expression of VEGF or its receptors when assessed at the end of training.  相似文献   

20.
12-Tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of U937 promonocytes leads to a 30-fold increase in transforming growth factor beta 1 (TGF-beta 1) gene expression, and this effect results from a stabilized mRNA. Similar up-regulation was detected in TPA-treated K562 erythroblasts but was absent from cell lines that do not differentiate in response to TPA. Related studies in vitro showed that postnuclear extracts of U937 promonocytes contain a ribonuclease system that degrades TGF-beta 1 mRNA selectively and that this system is completely blocked by prior treatment of the cells with TPA. These data identify a new mechanism for regulating TGF-beta 1 mRNA levels and allow us to establish the overall basis for control of TGF-beta 1 gene expression by activation of protein kinase C. Our results also provide a new basis for understanding the long-term up-regulation of TGF-beta 1 gene expression that can accompany hematopoietic cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号