首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C.P. Bell 《Bird Study》2013,60(3):333-341
Clutch size in the Yellow Wagtail increases by about one egg per 19° of latitude throughout Europe, but at a given latitude larger clutches are laid in western than in eastern Europe. In eastern Asia there is evidence of a reverse latitudinal cline, in which clutch size is smaller at higher latitudes, and considerably smaller than in Europe at equivalent latitudes. These trends suggest that smaller clutches are laid by populations with access to extensive wintering areas in east Africa and south-east Asia, whereas larger clutches are laid by populations with more restricted wintering areas in west Africa and India. Higher winter mortality in the latter populations may reduce breeding density, leading to less competition for resources and allowing larger clutches to be produced.  相似文献   

2.
Species with a wide distribution over latitudinal gradients often exhibit increasing growth and development rates towards higher latitudes. Ecological theory predicts that these fast-growing genotypes are, in the absence of trade-offs with fast growth, better competitors than low-latitude conspecifics. While knowledge on key ecological traits along latitudinal clines is important for understanding how these clines are maintained, the relative competitive ability of high latitude individuals against low latitude conspecifics has not been tested. Growth and development rates of the common frog Rana temporaria increase along the latitudinal gradient across Scandinavia. Here we investigated larval competition over food resources within and between two R. temporaria populations originating from southern and northern Sweden in an outdoor common garden experiment. We used a factorial design, where southern and northern tadpoles were reared either as single populations or as mixes of the two populations at two densities and predator treatments (absence and non-lethal presence of Aeshna dragonfly larvae). Tadpoles from the high latitude population grew and developed faster and in the beginning of the experiment they hid less and were more active than tadpoles from the low latitude population. When raised together with high latitude tadpoles the southern tadpoles had a longer larval period, however, the response of high latitude tadpoles to the competition by low latitude tadpoles did not differ from their response to intra-population competition. This result was not significantly affected by density or predator treatments. Our results support the hypothesis that high latitude populations are better competitors than their low latitude conspecifics, and suggest that in R. temporaria fast growth and development trade off with other fitness components along the latitudinal gradient across Scandinavia.  相似文献   

3.
Competition drives community composition in many ecosystems and can influence the spread of invasive species. Marine fouling communities are excellent study systems for competition because of space limitation and the abundance of invasive species. While many studies have examined individual or site-specific responses to changes in temperature or presence of invasive species, it is difficult to predict ecological impacts without assessing interspecific interactions over a wide geographic range. This study compared interactions between several globally distributed invasive fouling species over a broad geographic range. Weekly examination of photographs of settlement panels in marinas at 18 sites around the world allowed for the quantification of competitive outcomes. In the north Atlantic, experimental panels became covered with fouling organisms exponentially faster at warmer temperatures, while northeast and south Pacific sites did not. An invasive ascidian (Diplosoma listerianum) and bryozoan (Bugula neritina) were strong competitors, but most species displayed a negative response in high competition settings where there was little available space. Two species (Botryllus schlosseri and Botrylloides violaceus) had better competitive outcomes at cooler temperatures, possibly due to fewer strong competitors at these sites. Thus, warmer sites with little open space and multiple strong competitors are likely most resistant to future invasions, while colder sites with more open space and weaker competitors would be more susceptible to invasive species. These results suggest that the establishment and spread of invasive fouling species is likely to be influence by seawater temperature, available space, and the competitive abilities of community members.  相似文献   

4.
Most organisms experience competition for resources, probably most of the time. As the structure and requirements of closely related species are generally liable to be more similar than in distantly linked species, Darwin suggested that the potential for competition was greater in the former. Since that time, studies have concentrated on interactions of either conspecifics or congeneric species. Shared critical resources, which organisms compete for, are generally mates, food and space (for access to the former). Whilst mates are valued only within species, in that the definition of a species requires it so, both food and space have the potential to be shared by very different organisms. It is now clear that vertebrates may compete with remotely related species: e.g. with squid for krill and with insects for nectar or seeds. Diamond suggested that (i) mutual aggression, (ii) displacement and (iii) evolutionary change in morphology would be increasingly asymmetric with competitor dissimilarity. Thus, with increasing taxonomic distance between two competitors (A and B), increasing aggression is exhibited between them and, increasingly, one consistently displaces the other. Here, Darwin's suggestion and Diamond's first two theories are tested across a taxonomic spectrum for the first time to the best of the author's knowledge. The proportion of spatial competitors in two different marine invertebrate groups demonstrating mutual aggression and displacement increases with taxon divergence (Nei's genetic identity). Congenerics were twice as likely to fight as conspecifics, and confamilial competitors were three times as likely to fight as conspecifics. This relationship seems robust to taxonomic and environmental variability. Competitors do not need to be as distant as birds and bees for complete asymmetry, a different family seems sufficient.  相似文献   

5.
In sessile and sedentary organisms, competition for space may have fitness consequences that depend strongly on ecological context. Colonial hydroids in the genus Hydractinia use an inducible defense when encountering conspecifics, and intraspecific competition is common in natural populations, often resulting in complete overgrowth of subordinate competitors. My goal in this study was to quantify the impacts of agonistic interactions in Hydractinia [GM] (an undescribed species from the Gulf of Mexico) in terms of three primary fitness components: colony survival, growth rate, and immature gonozooid production. The results demonstrate that the fitness consequences of intraspecific competition depend on the size at which competitive encounters are initiated and the growth form (an indicator of competitive ability) of the competitors. Moreover, some competing colonies consistently produced more immature gonozooids than the controls without competition, and they exhibited extremely low mortality even after 90 days of growth. These results have several ramifications. First, agonistic interactions do not always proceed to competitive elimination. Second, the increase in production of immature gonozooids--an investment in future reproduction--in response to intraspecific competition supports the hypothesis that indeterminately growing organisms increase sexual reproductive effort when growth becomes limiting. Lastly, in light of known ontogenetic variation in the ability of Hydractinia to differentiate among genetically related colonies, strongly size-dependent fitness consequences are consistent with an adaptive, kin-discriminating allorecognition system.  相似文献   

6.
Senescence is the age‐related deterioration of the phenotype, explained by accumulation of mutations, antagonistic pleiotropy, free radicals or other mechanisms. I investigated patterns of actuarial senescence in a sample of 169 species of birds in relation to latitude and migration, by analysing longevity records adjusted for sampling effort, survival rate and body mass. Senescence might decrease at low latitudes because of elevated adult survival rates and generally slow life histories. Alternatively, the rate of senescence might increase at low latitudes because of the greater impact of biological interactions such as parasitism, predation and competition on fitness through differential effects of age‐specific mortality (e.g. because immunologically naïve young individuals and immuno‐senescent old individuals might die more frequently than individuals belonging to intermediate age classes). Bird migration entails extensive exercise twice annually, with migrants spending more time in benign environments with little abiotic mortality than residents, migrants having higher adult survival rate and lower annual fecundity than residents, and migrants suffering more from the consequences of oxidative stress than residents. The rate of senescence increased with latitude, as expected because of slow life histories at low latitudes. Independently, rate of senescence decreased with increasing migration distance. These findings were robust to control for potentially confounding effects of body mass, age of first reproduction and phenotypic similarity among species because of common descent.  相似文献   

7.
The coexistence of species sharing mutual resources is usually thought to be limited by negative processes such as interspecific competition. This is because an overlap in resource use leads to negative fitness consequences, and traits favouring avoidance of potential competitors, for example in habitat selection, are therefore selected for. However, species interactions are acknowledged to vary from negative (competition) to mutualism, although empirical evidence for positive interspecific interactions from natural communities of other than plants and sessile animals is scarce. Here, we experimentally examined the habitat selection and its fitness consequences of a migrant bird, the pied flycatcher (Ficedula hypoleuca), in relation to the presence of competitively superior birds, resident titmice (Parus spp.). Experiments were conducted on two spatial scales: landscape and nest-site scale. We demonstrate that pied flycatchers were attracted to and accrued fitness benefits from the presence of titmice. Flycatchers breeding in tight association with titmice initiated breeding earlier, had larger broods and heavier young than solitarily breeding flycatchers. This paradoxical result indicates that species interactions may switch from negative to positive and that the coexistence of species is not always restricted by negative costs caused by other species.  相似文献   

8.
Rapoport's rule claims that latitudinal ranges of plant and animal species are generally smaller at low than at high latitudes. However, doubts as to the generality of the rule have been expressed, because studies providing evidence against the rule are more numerous than those in support of it. In groups for which support has been provided, the trend of increasing latitudinal ranges with latitude is restricted to or at least most distinct at high latitudes, suggesting that the effect may be a local phenomenon, for example the result of glaciations. Here we test the rule using two models, a simple one-dimensional one with a fixed number of animals expanding in a northern or southerly direction only, and the evolutionary/ecological Chowdhury model using birth, ageing, death, mutation, speciation, prey-predator relations and food levels. Simulations with both models gave results contradicting Rapoport's rule. In the first, latitudinal ranges were roughly independent of latitude, in the second, latitudinal ranges were greatest at low latitudes, as also shown empirically for some well-studied groups of animals.  相似文献   

9.
Many organisms compete for space, or for resource that are linked to space. Territorial behavior in animals is one expression of competition for space. Models of competition for space seek to predict how the arrangement of individuals in a population changes as new individuals appear, others die, and neighbors interact with each other; studies of territorial behaviour examine how neighbor interactions lead animals to establish and maintain their use of space. In recent work on compition for space and on territorial behaviour, there has been a shift from simple, general models to ones that incorporate heterogeneity in the spatial and temporal distribution of resources, and in the ways individuals use resources.  相似文献   

10.
Rapoport's rule claims that latitudinal ranges of plant and animal species are generally smaller at low than at high latitudes. However, doubts as to the generality of the rule have been expressed, because studies providing evidence against the rule are more numerous than those in support of it. In groups for which support has been provided, the trend of increasing latitudinal ranges with latitude is restricted to or at least most distinct at high latitudes, suggesting that the effect may be a local phenomenon, for example the result of glaciations. Here we test the rule using two models, a simple one-dimensional one with a fixed number of animals expanding in a northern or southerly direction only, and the evolutionary/ecological Chowdhury model using birth, ageing, death, mutation, speciation, prey–predator relations and food levels. Simulations with both models gave results contradicting Rapoport's rule. In the first, latitudinal ranges were roughly independent of latitude, in the second, latitudinal ranges were greatest at low latitudes, as also shown empirically for some well-studied groups of animals.  相似文献   

11.
Thomas E. Martin 《Oecologia》1985,66(4):563-573
Summary Resource selection is a function of interactions of organisms (competition, predation) as well as characteristics of the resource and organisms. I provide a quantitative model that integrates these factors. I use the model to predict profitability of fruits to tropical birds, but the model and its predictions are applicable to a wider array of systems and organisms. Profitability of a fruit is determined by rewards provided by the pericarp (mass and caloric yields) relative to costs (metabolic requirements, handling time, search time, behavioral interference, predator avoidance) associated with finding and eating that fruit (Fig. 1). Fruits increase in profitability with increases in fruit size until increases in handling time offset increases in pericarp mass. The fruit size at which increases in handling time offset increases in pericarp mass varies among bird species due to differences in bill and body size. Decreases in feeding rate due to decreasing numbers of fruits and increasing search time causes reduced profitability and this effect becomes more severe with decreasing fruit size and/or increasing frugivore size. Consequently, as fruit size decreases relative to frugivore size, fruit abundance becomes increasingly important to fruit selection by frugivores. However, while profitability of resources is a function of characteristics of the resources and the organisms, biological interactions can change profitability rankings; resources that may be more profitable in the absence of behavioral interference, exploitation competition, or predation risk can become less profitable in the face of these interactions. The proposed model integrates these interactions to provide predictions of resource selection and these predictions are supported by published studies.  相似文献   

12.
Fungal spores are among the most commonly encountered airborne biological particles, and it is widely proved that they represent a potential source of allergens involved in rhinitis and asthma. A change in temperature may influence the colonisation and growth of fungi directly through the physiology of individual organisms, or indirectly through physiological effects on their host plants or substrates and any competitors or enemies. In order to detect and monitor the evolution of the spore counts, air sampling was carried out using standard equipment (Hirst-type volumetric traps) and an identical method in several stations across France. Cladosporium has been here emphasised because of its very large contribution to the total fungal spectrum. Moreover, this taxon is of particular clinical importance because it possesses a high allergenic potential. The data from the oldest traps (Aix-en-Provence, Bordeaux, Lyon, Paris and Toulouse) were analysed on an annual base. Located at different latitudes and in different climatic areas, these five cities showed fundamentally different trends for the concentrations of Cladosporium spores: downward trend at the southernmost locations and upward trend at the other locations, whereas temperature was everywhere continuously rising over the study period. However, longer data sets are needed to be able to draw more definitive conclusions about quantitative trends in airborne fungal spore concentrations.  相似文献   

13.
Ameronothroid mites, including Ameronothridae, Fortuyniidae and Selenoribatidae, are unique among the Oribatida through having a global distribution from the tropics to the poles, and occupying a diversity of habitats including terrestrial, marine and freshwater. Their ecological diversification is of considerable interest from both the perspective of evolution over geological timescales, and the detail of the underlying processes. Given their widespread global distribution, it seems likely that historical global events (tectonic and climatic) have played a fundamental role in their ecological diversification. Previous studies of sub-Antarctic island arthropods have generated considerable circumstantial evidence in support of glaciation being a primary factor influencing ecological patterns: lower habitat specificity and weaker interspecific interactions are associated with more recent (postglacial) vegetated terrestrial biotopes, as compared to the older epilithic and littoral biotopes (which are assumed to have been present, albeit reduced in extent, during Neogene glacial maxima). Here, we use ameronothrid mites as a case study to examine the extent to which the above island scenario generalizes globally across latitudes affected by glaciation. We show that, unlike congeners or even conspecifics at lower latitudes in each hemisphere which are restricted to marine environments, the species found at higher latitudes (especially Alaskozetes antarcticus, Ameronothrus dubinini, Ameronothrus lineatus, and Halozetes belgicae) show greater affinity for terrestrial environments. They show a transition or expansion of habitat use (from marine-influenced to terrestrial habitats) implicit with a lower degree of habitat specificity, in relation to increasing latitude. We contend that the terrestrial environment at higher latitudes in both hemispheres has been colonized by these ameronothrid mite species following the various glaciation events, facilitated by a lack of competition experienced in their low diversity communities, in a manner which represents a larger scale demonstration of the processes described on sub-Antarctic islands.  相似文献   

14.

Competition is a fundamental process structuring ecological communities. On coral reefs, space is a highly contested resource and the outcomes of spatial competition can dictate community composition. In the Caribbean, reefs are increasingly dominated by non-scleractinian species like sponges, gorgonians, and zoanthids, yet there is a paucity of data on interactions between these increasingly common organisms and historically dominant corals. Here, we investigated interactions among these groups of sessile benthic invertebrates to better understand the role of spatial competition in shaping benthic communities on Caribbean reefs. We coupled surveys of competitive interactions on the reef with a common garden competition experiment to determine the frequency and outcome of interference competition among eight focal species. We found that competitive interactions were pervasive on Florida reefs, with 60% of sessile benthic invertebrates interacting with at least one other invertebrate. Increasingly common non-scleractinian species were some of the most abundant taxa and consistently outcompeted the contemporarily common scleractinian species Porites porites and Siderastrea siderea. The encrusting gorgonian, Erythropodium caribaeorum, was the most aggressive species, reducing the live area of its competitors on average 42% ± 7.04 (SE) over the course of 5 months. Surprisingly, the most aggressive species declined in size when competing, while some less aggressive species were able to increase or maintain area, suggesting a trade-off between aggressiveness and growth. Our findings suggest that competition among sessile invertebrates is likely to remain an important process in structuring coral reefs, but that the optimal strategies for maintaining space on the benthos may change. Importantly, many non-scleractinian species that now dominate reefs appear to be superior competitors, potentially increasing the stress on corals on contemporary reefs.

  相似文献   

15.
Theories of species coexistence often describe a trade‐off between colonising and competitive abilities. In sessile marine invertebrates, this trade‐off can manifest as trends in species distributions relative to the size of isolated patches of substrate. Based on their abilities to find available substrate and competitively exclude neighbours, good colonisers tend to dominate smaller patches, whereas better competitors tend to monopolise larger patches. In theory, species with equivalent colonising and competitive abilities should display similar distributions across patch sizes. We used patch size to observe this manifestation of the competition‐colonisation trade‐off over 20° of latitude. The trade‐off was more readily observed at lower latitudes and was proportional to the ‘ecological age’ of communities (i.e. the degree of resource acquisition and likelihood of species interactions). Results suggest that ecological age may mediate the prominence of stochastic or deterministic coexistence mechanisms and will depend on the rate of ecological processes.  相似文献   

16.
Resource defense behavior is often explained by the spatial and temporal distribution of resources. However, factors such as competition, habitat complexity, and individual space use may also affect the capacity of individuals to defend and monopolize resources. Yet, studies frequently focus on one or two factors, overlooking the complexity found in natural settings. Here, we addressed defense and monopolization of nectar feeders in a population of free‐ranging ruby‐throated hummingbirds marked with passive integrated transponder (PIT tags). Our study system consisted of a 44 ha systematic grid of 45 feeders equipped with PIT tag detectors recording every visit made at feeders. We modeled the number of visits by competitors (NVC) at feeders in response to space use by a focal individual potentially defending a feeder, number of competitors, nectar sucrose concentration, and habitat visibility. Individuals who were more concentrated at certain feeders on a given day and who were more stable in their use of the grid throughout the season gained higher exclusivity in the use of those feeders on that day, especially for males competing against males. The level of spatial concentration at feeders and its negative effect on NVC was, however, highly variable among individuals, suggesting a continuum in resource defense strategies. Although the apparent capacity to defend feeders was not affected by competition or nectar sucrose concentration, the level of monopolization decreased with increasing number of competitors and higher nectar quality. Defense was enhanced by visibility near feeders, but only in forested habitats. The reverse effect of visibility in open habitats was more difficult to interpret as it was probably confounded by perch availability, from which a bird can defend its feeder. Our study is among the first to quantify the joint use of food resource by overlapping individuals unconstrained in their use of space. Our results show the importance of accounting for variation in space use among individuals as it translated into varying levels of defense and monopolization of feeders regardless of food resource distribution.  相似文献   

17.
It is widely assumed that aggressive behavior affects space acquisition in territorial species, but to date most workers have focused on competition for indivisible space, that is, space that cannot be divided or shared. We present a learning-based model that investigates the effects of aggressive interactions on space acquisition when unequal competitors arrive and settle in patches of divisible space. This model assumes that aggressive interactions act as punishment, in the sense that previous aggressive interactions in a given area reduce an individual's likelihood of returning to that area. Individually based, spatially explicit simulations incorporating this and other assumptions were used to investigate the effects of different types of aggressive interactions on the space use of individuals and dyads settling in divisible space. At the individual level, final space use was related to the amount of punishment that individuals inflicted on their opponents during aggressive interactions; in general, highly aggressive individuals acquired larger, more exclusive home ranges than less aggressive individuals. At the dyadic level, the division or sharing of space between competitors depended on both the relative and absolute punishment that competitors inflicted on one another during aggressive interactions. Aggressive interactions in which both participants strongly punished one another (e.g., escalated fights) produced mutually exclusive home ranges, interactions with intermediate levels of punishment produced asymmetrical space use patterns proportional to asymmetries in punishment levels, and interactions involving little punishment for either participant generated large home ranges with extensive home range overlap. Overall, our model implies that territorial animals need not "win" aggressive interactions to win divisible space, that repeatedly "nagging" an opponent may also be a viable strategy for gaining space, and that a learning-based approach can account for puzzling patterns in the territorial literature, for example, observations of individuals who acquire space by initiating aggressive interactions that they never win.  相似文献   

18.
Theoretical studies of character displacement lead to the view that evolutionary divergence depends primarily on incomplete utilization of available resources. Those models which incorporate constraints preventing complete utilization of resources, even in the absence of competitors, all predict character displacement. Those models which allow greater flexibility of resource use within a species predict correspondingly less divergence. Indeed, Matessi and Jayakar (1980, 1981) based their conditions for occurrence of character displacement on underutilization of resources. I extend a model used by Slatkin (1980, 1983) and Taper and Case (1985) which allows each species to fully utilize its resources in the absence of competitors. I concentrate on the biologically reasonable case in which the species, though similar, differ in their ecological characteristics. As a result of this greater biological realism, I arrive at a different conclusion regarding the conditions which lead to character displacement. The presence of a variety of biological differences between species—including as a subset those which result from resource underutilization—leads to divergence with respect to a quantitatively inherited character, due to interspecific competitive interactions. The resulting displacement can be large and depends little on the parameters chosen. The only exception, involving a character with very low heritability, occurs when the non-interactive phenotypic differences are much greater than those associated with studies of character displacement in natural populations. Thus, under conditions comparable to those encountered in the field, involving similar yet not identical species, evolutionary divergence is a consequence of interspecific competition.  相似文献   

19.
Ameronothroid mites, including Ameronothridae, Fortuyniidae and Selenoribatidae, are unique among the Oribatida through having a global distribution from the tropics to the poles, and occupying a diversity of habitats including terrestrial, marine and freshwater. Their ecological diversification is of considerable interest from both the perspective of evolution over geological timescales, and the detail of the underlying processes. Given their widespread global distribution, it seems likely that historical global events (tectonic and climatic) have played a fundamental role in their ecological diversification. Previous studies of sub-Antarctic island arthropods have generated considerable circumstantial evidence in support of glaciation being a primary factor influencing ecological patterns: lower habitat specificity and weaker interspecific interactions are associated with more recent (postglacial) vegetated terrestrial biotopes, as compared to the older epilithic and littoral biotopes (which are assumed to have been present, albeit reduced in extent, during Neogene glacial maxima). Here, we use ameronothrid mites as a case study to examine the extent to which the above island scenario generalizes globally across latitudes affected by glaciation. We show that, unlike congeners or even conspecifics at lower latitudes in each hemisphere which are restricted to marine environments, the species found at higher latitudes (especially Alaskozetes antarcticus, Ameronothrus dubinini, Ameronothrus lineatus, and Halozetes belgicae) show greater affinity for terrestrial environments. They show a transition or expansion of habitat use (from marine-influenced to terrestrial habitats) implicit with a lower degree of habitat specificity, in relation to increasing latitude. We contend that the terrestrial environment at higher latitudes in both hemispheres has been colonized by these ameronothrid mite species following the various glaciation events, facilitated by a lack of competition experienced in their low diversity communities, in a manner which represents a larger scale demonstration of the processes described on sub-Antarctic islands.  相似文献   

20.
Many investigations of the interactions of microbial competitors in the gastrointestinal tract used continuous-flow anaerobic cultures. The simulation reported here was a deterministic 11-compartment model coded by using the C programming language and based on parameters from published in vitro studies and assumptions were data were unavailable. The resource compartments were glucose, lactose and sucrose, starch, sorbose, and serine. Six microbial competitors included indigenous nonpathogenic colonizers of the human gastrointestinal tract (Escherichia coli, Enterobacter aerogenes, Bacteroids ovatus, Fusobacterium varium, and Enterococcus faecalis) and the potential human enteropathogen Salmonella typhimurium. Flows of carbon from the resources to the microbes were modified by resource and space controls. Partitioning of resources to the competitors that could utilize them was calculated at each iteration on the basis of availability of all resources by feeding preference functions. Resources did not accumulate during iterations of the model. The results of the computer simulation of microbial competition model and for various modifications of the model. The results were based on few measured parameters but may be useful in the design of user-friendly software to aid researchers in defining and manipulating the microbial ecology of colonic ecosystems as relates to food-borne disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号