首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The origins and divergence of Drosophila simulans and close relatives D. mauritiana and D. sechellia were examined using the patterns of DNA sequence variation found within and between species at 14 different genes. D. sechellia consistently revealed low levels of polymorphism, and genes from D. sechellia have accumulated mutations at a rate that is approximately 50% higher than the same genes from D. simulans. At synonymous sites, D. sechellia has experienced a significant excess of unpreferred codon substitutions. Together these observations suggest that D. sechellia has had a reduced effective population size for some time, and that it is accumulating slightly deleterious mutations as a result. D. simulans and D. mauritiana are both highly polymorphic and the two species share many polymorphisms, probably since the time of common ancestry. A simple isolation speciation model, with zero gene flow following incipient species separation, was fitted to both the simulans/mauritiana divergence and the simulans/sechellia divergence. In both cases the model fit the data quite well, and the analyses revealed little evidence of gene flow between the species. The exception is one gene copy at one locus in D. sechellia, which closely resembled other D. simulans sequences. The overall picture is of two allopatric speciation events that occurred quite near one another in time.  相似文献   

3.
Two regions of the genome, a 1-kbp portion of the zeste locus and a 1.1- kbp portion of the yolk protein 2 locus, were sequenced in six individuals from each of four species: Drosophila melanogaster, D. simulans, D. mauritiana, and D. sechellia. The species and strains were the same as those of a previous study of a 1.9-kbp region of the period locus. No evidence was found for recent balancing or directional selection or for the accumulation of selected differences between species. Yolk protein 2 has a high level of amino acid replacement variation and a low level of synonymous variation, while zeste has the opposite pattern. This contrast is consistent with information on gene function and patterns of codon bias. Polymorphism levels are consistent with a ranking of effective population sizes, from low to high, in the following order: D. sechellia, D. melanogaster, D.mauritiana, and D. simulans. The apparent species relationships are very similar to those suggested by the period locus study. In particular, D. simulans appears to be a large population that is still segregating variation that arose before the separation of D. mauritiana and D. sechellia. It is estimated that the separation of ancestral D. melanogaster from the other species occurred 2.5-3.4 Mya. The separations of D. sechellia and D. mauritiana from ancestral D. simulans appear to have occurred 0.58- 0.86 Mya, with D. mauritiana having diverged from ancestral D. simulans 0.1 Myr more recently than D. sechellia.   相似文献   

4.
Four sibling species from the melanogaster subgroup (Drosophila melanogaster, D. simulans, D. sechellia, and D. mauritiana) were studied for genetic divergence, by high-resolution two-dimensional protein electrophoresis (2DE) coupled with ultrasensitive silver staining. A total of eight tissues from larval and adult developmental stages representing both gonadal (germ-line) and nongonadal (somatic) tissues were analyzed for protein divergence between species. Close to 400 polypeptides (protein spots) were scored from each tissue and species, and protein divergence was measured on the basis of qualitative differences (presence/absence) of protein spots in pairwise species comparisons. The observed levels of genic divergence varied among tissues and among species. When larval hemolymph proteins (which are known to be highly polymorphic) were excluded, there was no evidence to suggest that either the larval or adult-stage proteins, as a whole, are more diverged than the other; variation between different tissues rather than between developmental stages appears to be the most significant factor affecting genetic divergence between species. The reproductive tissue (testis and accessory gland) showed more divergence than did the nonreproductive tissue; D. melanogaster testis (from both larvae and adult males) showed the highest level of divergence. In view of the previous observation that D. simulans, D. mauritiana, and D. sechellia show similar but significantly less reproductive isolation from each other than from D. melanogaster, the present results suggest a correlation between the levels of reproductive-tract-protein divergence and the degree of reproductive isolation in these species.  相似文献   

5.
R. M. Kliman  J. Hey 《Genetics》1993,133(2):375-387
A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus.  相似文献   

6.
While developmentally regulated genes are generally conserved, transformer (tra), a key locus involved in the regulation of sexual differentiation, is highly diverged between species of Drosophila. With an aim to understand its divergence between sibling species, we investigated tra sequence variation among members of the Drosophila melanogaster species complex, D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. In this species group, tra divergence is rapid yet clocklike and exhibits large differences in protein size. D. melanogaster contains a 13-amino acid tandem duplication, whereas D. sechellia possesses a 72-amino acid tandem duplication representing a 30% increase in total amino acid residues. We also found evidence of a nonrandom distribution of replacement substitutions and heterogeneity in substitution rates using clustering statistics and a codon substitution model. We show that tra's rapid divergence in this species complex is the result of generally lower selective constraints around regions that encode arginine-serine (RS) domains and a significantly higher rate of substitutions around the insertion site of D. sechellia's large duplication. The proximity of rapidly diverged regions to sites of nucleotide insertion suggests that higher local rates of mutation may provide a causal mechanism for TRA's rapid divergence in this subgroup. A comparison of tra orthologs across the genus Drosophila suggest that TRA maintains an assortment of RS domains for proper sex determining function while much of the protein evolves relatively unconstrained.  相似文献   

7.
Bachtrog D  Andolfatto P 《Genetics》2006,174(4):2045-2059
Selection, recombination, and the demographic history of a species can all have profound effects on genomewide patterns of variability. To assess the impact of these forces in the genome of Drosophila miranda, we examine polymorphism and divergence patterns at 62 loci scattered across the genome. In accordance with recent findings in D. melanogaster, we find that noncoding DNA generally evolves more slowly than synonymous sites, that the distribution of polymorphism frequencies in noncoding DNA is significantly skewed toward rare variants relative to synonymous sites, and that long introns evolve significantly slower than short introns or synonymous sites. These observations suggest that most noncoding DNA is functionally constrained and evolving under purifying selection. However, in contrast to findings in the D. melanogaster species group, we find little evidence of adaptive evolution acting on either coding or noncoding sequences in D. miranda. Levels of linkage disequilibrium (LD) in D. miranda are comparable to those observed in D. melanogaster, but vary considerably among chromosomes. These patterns suggest a significantly lower rate of recombination on autosomes, possibly due to the presence of polymorphic autosomal inversions and/or differences in chromosome sizes. All chromosomes show significant departures from the standard neutral model, including too much heterogeneity in synonymous site polymorphism relative to divergence among loci and a general excess of rare synonymous polymorphisms. These departures from neutral equilibrium expectations are discussed in the context of nonequilibrium models of demography and selection.  相似文献   

8.
An unconstrained reference sequence facilitates the detection of selection. In Drosophila, sequence variation in short introns seems to be least influenced by selection and dominated by mutation and drift. Here, we test this with genome‐wide sequences using an African population (Malawi) of D. melanogaster and data from the related outgroup species D. simulans, D. sechellia, D. erecta and D. yakuba. The distribution of mutations deviates from equilibrium, and the content of A and T (AT) nucleotides shows an excess of variance among introns. We explain this by a complex mutational pattern: a shift in mutational bias towards AT, leading to a slight nonequilibrium in base composition and context‐dependent mutation rates, with G or C (GC) sites mutating most frequently in AT‐rich introns. By comparing the corresponding allele frequency spectra of AT‐rich vs. GC‐rich introns, we can rule out the influence of directional selection or biased gene conversion on the mutational pattern. Compared with neutral equilibrium expectations, polymorphism spectra show an excess of low frequency and a paucity of intermediate frequency variants, irrespective of the direction of mutation. Combining the information from different outgroups with the polymorphism data and using a generalized linear model, we find evidence for shared ancestral polymorphism between D. melanogaster and D. simulans, D. sechellia, arguing against a bottleneck in D. melanogaster. Generally, we find that short introns can be used as a neutral reference on a genome‐wide level, if the spatially and temporally varying mutational pattern is accounted for.  相似文献   

9.
Intraspecific nuclear DNA variation in Drosophila   总被引:18,自引:6,他引:12  
We have summarized and analyzed all available nuclear DNA sequence polymorphism studies for three species of Drosophila, D. melanogaster (24 loci), D. simulans (12 loci), and D. pseudoobscura (5 loci). Our major findings are: (1) The average nucleotide heterozygosity ranges from about 0.4% to 2% depending upon species and function of the region, i.e., coding or noncoding. (2) Compared to D. simulans and D. pseudoobscura (which are about equally variable), D. melanogaster displays a low degree of DNA polymorphism. (3) Noncoding introns and 3' and 5' flanking DNA shows less polymorphism than silent sites within coding DNA. (4) X-linked genes are less variable than autosomal genes. (5) Transition (Ts) and transversion (Tv) polymorphisms are about equally frequent in non-coding DNA and at fourfold degenerate sites in coding DNA while Ts polymorphisms outnumber Tv polymorphisms by about 2:1 in total coding DNA. The increased Ts polymorphism in coding regions is likely due to the structure of the genetic code: silent changes are more often Ts's than are replacement substitutions. (6) The proportion of replacement polymorphisms is significantly higher in D. melanogaster than in D. simulans. (7) The level of variation in coding DNA and the adjacent noncoding DNA is significantly correlated indicating regional effects, most notably recombination. (8) Surprisingly, the level of polymorphism at silent coding sites in D. melanogaster is positively correlated with degree of codon usage bias. (9) Three proposed tests of the neutral theory of DNA polymorphisms have been performed on the data: Tajima's test, the HKA test, and the McDonald-Kreitman test. About half of the loci fail to conform to the expectations of neutral theory by one of the tests. We conclude that many variables are affecting levels of DNA polymorphism in Drosophila, from properties of nucleotides to population history and, perhaps, mating structure. No simple, all encompassing explanation satisfactorily accounts for the data.   相似文献   

10.
ABSTRACT: BACKGROUND: During the evolutionary history of transposable elements, some processes, such as ancestral polymorphisms and horizontal transfer of sequences between species, can produce incongruences in phylogenies. We investigated the evolutionary history of the transposable elements Bari and 412 in the sequenced genomes of the Drosophila melanogaster group and in the sibling species D. melanogaster and D. simulans using traditional phylogenetic and network approaches. RESULTS: The maximum likelihood (ML) phylogenetic analyses revealed incongruences and unresolved relationships for both the Bari and 412 elements. The DNA transposon Bari within the D. ananassae genome is more closely related to the element of the melanogaster complex than to the sequence in D. erecta, which is inconsistent with the species phylogeny. Divergence analysis and the comparison of the rate of synonymous substitutions per synonymous site of the Bari and host gene sequences explain the incongruence as an ancestral polymorphism inherited stochastically by the derived species. Unresolved relationships were observed in the ML phylogeny of both elements involving D. melanogaster, D. simulans and D. sechellia. A network approach was used to attempt to resolve these relationships. The resulting tree suggests recent transfers of both elements between D. melanogaster and D. simulans. The divergence values of the elements between these species support this conclusion. CONCLUSIONS: We showed that an ancestral polymorphism and recent invasion of genomes due to introgression or horizontal transfer between species occurred during the evolutionary history of the Bari and 412 elements in the melanogaster group. These invasions likely occurred in Africa during the Pleistocene, before the worldwide expansion of D. melanogaster and D. simulans.  相似文献   

11.
Kern AD  Jones CD  Begun DJ 《Genetics》2004,167(2):725-735
Accessory gland proteins are a major component of Drosophila seminal fluid. These proteins have a variety of functions and may be subject to sexual selection and/or antagonistic evolution between the sexes. Most population genetic data from these proteins are from D. melanogaster and D. simulans. Here, we extend the population genetic analysis of Acp genes to the other simulans complex species, D. mauritiana and D. sechellia. We sequenced population samples of seven Acp's from D. mauritiana, D. sechellia, and D. simulans. We investigated the population genetics of these genes on individual simulans complex lineages and compared Acp polymorphism and divergence to polymorphism and divergence from a set of non-Acp loci in the same species. Polymorphism and divergence data from the simulans complex revealed little evidence for adaptive protein evolution at individual loci. However, we observed a dramatically inflated index of dispersion for amino acid substitutions in the simulans complex at Acp genes, but not at non-Acp genes. This pattern of episodic bursts of protein evolution in Acp's provides the strongest evidence to date that the population genetic mechanisms driving Acp divergence are different from the mechanisms driving evolution at most Drosophila genes.  相似文献   

12.
Previous analyses of the alpha-esterase cluster of Drosophila melanogaster revealed 10 active genes and the DmalphaE4a-Psi pseudogene. Here, we reconstruct the evolution of the pseudogene from the sequences of 12 alleles from widely scattered D. melanogaster populations and single alleles from Drosophila simulans and Drosophila yakuba. All of the DmalphaE4a-Psi alleles contain numerous inactivating mutations, suggesting that pseudogene alleles are fixed in natural populations. Several lines of evidence also suggest that DmalphaE4a is now evolving without selective constraint in the D. melanogaster lineage. There are three polymorphic indels which result in frameshifts; a key nucleotide of the intron splice acceptor is polymorphic; the neutral mutation parameter is the same for replacement and silent sites; one of the nonsilent polymorphisms results in a stop codon; only 1 of the 13 replacement polymorphisms is biochemically conservative; residues that are conserved among active esterases have different states in DmalphaE4a-Psi; and there are about half as many transitional polymorphisms as transversional ones. In contrast, the D. simulans and D. yakuba orthologs DsalphaE4a and DyalphaE4a do not have the inactivating mutations of DmalphaE4a-Psi and appear to be evolving under the purifying selection typical of protein- encoding genes. For instance, there have been more substitutions in the introns than in the exons, and more in silent sites than in replacement sites. Furthermore, most of the amino acid substitutions that have occurred between DyalphaE4a and DsalphaE4a are located in sites that typically vary among active alpha-esterases rather than those that are usually conserved. We argue that the original alphaE4a gene had a function which it has lost since the divergence of the D. melanogaster and D. simulans lineages.  相似文献   

13.
Several studies have demonstrated high levels of sequence conservation in noncoding DNA compared between two species (e.g., human and mouse), and interpreted this conservation as evidence for functional constraints. If this interpretation is correct, it suggests the existence of a hidden class of abundant regulatory elements. However, much of the noncoding sequence conserved between two species may result from chance or from small-scale heterogeneity in mutation rates. Stronger inferences are expected from sequence comparisons using more than two taxa, and by testing for spatial patterns of conservation in addition to primary sequence similarity. We used a Bayesian local alignment method to compare approximately 10 kb of intron sequence from nine genes in a pairwise manner between human, whale, and seal to test whether the degree and pattern of conservation is consistent with neutral divergence. Comparison of the three sets of conserved gapless pairwise blocks revealed the following patterns: The proportion of identical intron nucleotides averaged 47% in pairwise comparisons and 28% across the three taxa. Proportions of conserved sequence were similar in unique sequence and general mammalian repetitive elements. We simulated sequence evolution under a neutral model using published estimates of substitution rate heterogeneity for noncoding DNA and found pairwise identity at 33% and three-taxon identity at 16% of nucleotide sites. Spatial patterns of primary sequence conservation were also nonrandomly distributed within introns. Overall, segments of intron sequence closer to flanking exons were significantly more conserved than interior intron sequence. This level of intron sequence conservation is above that expected by chance and strongly suggests that intron sequences are playing a larger functional role in gene regulation than previously realized.  相似文献   

14.
B. G. Leicht  S. V. Muse  M. Hanczyc    A. G. Clark 《Genetics》1995,139(1):299-308
Interspecific comparisons of intron sequences reveal conserved blocks of invariant nucleotides and several other departures from the strictly neutral model of molecular evolution. To distinguish the past action of evolutionary forces in introns known to have regulatory information, we examined nucleotide sequence variation at 991 sites in a random sample of 16 Drosophila melanogaster alleles of the gene encoding the myosin alkali light chain (Mlc1). The Mlc1 gene of D. melanogaster encodes two MLC1 isoforms via developmentally regulated alternative pre-mRNA splicing. Analyses of these data reveal that introns 4 and 5, which flank the alternatively spliced exon 5, have reduced levels of both intraspecific polymorphism and interspecific divergence relative to intron 3. No polymorphism was observed in any of the exons examined in D. melanogaster. A genealogical analysis clearly demonstrates the occurrence of intragenic recombination in the ancestral history of Mlc1. Recombination events are estimated to be 13 times more likely than mutation events over the span of the sequenced region. Although there is little evidence for pairwise linkage disequilibrium in the Mlc1 region, higher order disequilibrium does seem to be present in the 5' half of the portion of the gene that was examined. Predictions of the folding free energy of the pre-mRNA reveal that sampled alleles have a significantly higher (less stable) free energy than do randomly permuted sequences. These results are consistent with the hypothesis that introns surrounding an alternatively spliced exon are subjected to additional constraints, perhaps due to specific aspects of secondary structure required for appropriate splicing of the pre-mRNA molecule.  相似文献   

15.
Reconstruction of phylogenetic relationships among recently diverged species is complicated by three general problems: segregation of polymorphisms that pre-date species divergence, gene flow during and after speciation, and intra-locus recombination. In light of these difficulties, the Y chromosome offers several important advantages over other genomic regions as a source of phylogenetic information. These advantages include the absence of recombination, rapid coalescence, and reduced opportunity for interspecific introgression due to hybrid male sterility. In this report, we test the phylogenetic utility of Y-chromosomal sequences in two groups of closely related and partially inter-fertile Drosophila species. In the D. bipectinata species complex, Y-chromosomal loci unambiguously recover the phylogeny most consistent with previous multi-locus analysis and with reproductive relationships, and show no evidence of either post-speciation gene flow or persisting ancestral polymorphisms. In the D. simulans species complex, the situation is complicated by the duplication of at least one Y-linked gene region, followed by intrachromosomal recombination between the duplicate genes that scrambles their genealogy. We suggest that Y-chromosomal sequences are a useful tool for resolving phylogenetic relationships among recently diverged species, especially in male-heterogametic organisms that conform to Haldane's rule. However, duplication of Y-linked genes may not be uncommon, and special care should be taken to distinguish between orthologous and paralogous sequences.  相似文献   

16.
M. F. Palopoli  A. W. Davis    C. I. Wu 《Genetics》1996,144(3):1321-1328
According to measures of molecular divergence, the three species of the Drosophila simulans clade are closely related to and essentially equidistant from each other. We introgressed 10% of the D. sechellia X chromosome into a pure D. simulans genetic background and found that males carrying this introgressed region were consistently fertile; in contrast, males carrying the same segment from D. mauritiana are sterile and suffer from incompatibilities at a minimum of four loci. Together with other recent results, these data suggest that D. simulans and D. sechellia are much more closely related to each other than either is to D. mauritiana. How can we reconcile the phylogeny inferred from the density of hybrid sterility genes with that inferred from molecular divergence? If the molecular phylogeny is correct, the discrepancy might be explained by uneven rates of functional evolution, resulting in the uneven accumulation of substitutions with corresponding negative effects in hybrids. If the functional phylogeny is correct, then low levels of gene flow across nascent species boundaries, particularly for loci not tightly linked to a hybrid sterility gene, may have erased the original pattern of lineage splitting. We propose tests that will allow us to discriminate between these hypotheses.  相似文献   

17.
Evolution of the Transposable Element Mariner in Drosophila Species   总被引:3,自引:0,他引:3       下载免费PDF全文
K. Maruyama  D. L. Hartl 《Genetics》1991,128(2):319-329
The distribution of the transposable element mariner was examined in the genus Drosophila. Among the eight species comprising the melanogaster species subgroup, the element is present in D. mauritiana, D. simulans, D. sechellia, D. yakuba and D. teissieri, but it is absent in D. melanogaster, D. erecta and D. orena. Multiple copies of mariner were sequenced from each species in which the element occurs. The inferred phylogeny of the elements and the pattern of divergence were examined in order to evaluate whether horizontal transfer among species or stochastic loss could better account for the discontinuous distribution of the element among the species. The data suggest that the element was present in the ancestral species before the melanogaster subgroup diverged and was lost in the lineage leading to D. melanogaster and the lineage leading to D. erecta and D. orena. This inference is consistent with the finding that mariner also occurs in members of several other species subgroups within the overall melanogaster species group. Within the melanogaster species subgroup, the average divergence of mariner copies between species was lower than the coding region of the alcohol dehydrogenase (Adh) gene. However, the divergence of mariner elements within species was as great as that observed for Adh. We conclude that the relative sequence homogeneity of mariner elements within species is more likely a result of rapid amplification of a few ancestral elements than of concerted evolution. The mariner element may also have had unequal mutation rates in different lineages.  相似文献   

18.
There is now a wealth of evidence that some of the most important regions of the genome are found outside those that encode proteins, and noncoding regions of the genome have been shown to be subject to substantial levels of selective constraint, particularly in Drosophila. Recent work has suggested that these regions may also have been subject to the action of positive selection, with large fractions of noncoding divergence having been driven to fixation by adaptive evolution. However, this work has focused on Drosophila melanogaster, which is thought to have experienced a reduction in effective population size (N(e)), and thus a reduction in the efficacy of selection, compared with its closest relative Drosophila simulans. Here, we examine patterns of evolution at several classes of noncoding DNA in D. simulans and find that all noncoding DNA is subject to the action of negative selection, indicated by reduced levels of polymorphism and divergence and a skew in the frequency spectrum toward rare variants. We find that the signature of negative selection on noncoding DNA and nonsynonymous sites is obscured to some extent by purifying selection acting on preferred to unpreferred synonymous codon mutations. We investigate the extent to which divergence in noncoding DNA is inferred to be the product of positive selection and to what extent these inferences depend on selection on synonymous sites and demography. Based on patterns of polymorphism and divergence for different classes of synonymous substitution, we find the divergence excess inferred in noncoding DNA and nonsynonymous sites in the D. simulans lineage difficult to reconcile with demographic explanations.  相似文献   

19.
Genetic analysis of hybrids between Drosophila simulans and D. sechellia shows that sexual isolation in females is caused by at least two genes, one on each major autosome, while the X chromosome has no effect. These results are similar to those of a previous study of hybrids between D. simulans and another sibling species, D. mauritiana. In this latter hybridization, each arm of the second chromosome carries genes causing sexual isolation in females, implying a total divergence of at least three loci. The genetic similarity between the D. simulans/D. mauritiana and D. simulans/D. sechellia hybridizations probably results from independent evolution and not phylogenetic artifacts, because the dominance relationships and behavioural interactions differ between the two hybridizations. The lack of an X-chromosome effect on sexual isolation contrasts with genetic studies of post-zygotic reproductive isolation, which invariably show strong effects of this chromosome.  相似文献   

20.
Lerat E  Burlet N  Biémont C  Vieira C 《Gene》2011,473(2):100-109
Transposable elements (TEs) are indwelling components of genomes, and their dynamics have been a driving force in genome evolution. Although we now have more information concerning their amounts and characteristics in various organisms, we still have little data from overall comparisons of their sequences in very closely-related species. While the Drosophila melanogaster genome has been extensively studied, we have only limited knowledge regarding the precise TE sequences in the genomes of the related species Drosophila simulans, Drosophila sechellia and Drosophila yakuba. In this study we analyzed the number and structure of TE copies in the sequenced genomes of these four species. Our findings show that, unexpectedly, the number of TE insertions in D. simulans is greater than that in D. melanogaster, but that most of the copies in D. simulans are degraded and in small fragments, as in D. sechellia and D. yakuba. This suggests that all three species were invaded by numerous TEs a long time ago, but have since regulated their activity, as the present TE copies are degraded, with very few full-length elements. In contrast, in D. melanogaster, a recent activation of TEs has resulted in a large number of almost-identical TE copies. We have detected variants of some TEs in D. simulans and D. sechellia, that are almost identical to the reference TE sequences in D. melanogaster, suggesting that D. melanogaster has recently been invaded by active TE variants from the other species. Our results indicate that the three species D. simulans, D. sechellia, and D. yakuba seem to be at a different stage of their TE life cycle when compared to D. melanogaster. Moreover, we show that D. melanogaster has been invaded by active TE variants for several TE families likely to come from D. simulans or the ancestor of D. simulans and D. sechellia. The numerous horizontal transfer events implied to explain these results could indicate introgression events between these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号