首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mice lacking natriuretic peptide receptor-A (NPRA) develop progressive cardiac hypertrophy and congestive heart failure. However, the mechanisms responsible for cardiac hypertrophic growth in the absence of NPRA signaling are not yet known. We sought to determine the activation of nuclear factor-kappaB (NF-kappaB) in Npr1 (coding for NPRA) gene-knockout (Npr1-/-) mice exhibiting cardiac hypertrophy and fibrosis. NF-kappaB binding activity was 4-fold greater in the nuclear extract of Npr1-/- mutant mice hearts as compared with wild-type (Npr1+/+) mice hearts. In parallel, inhibitory kappaB kinase-beta activity and IkappaB-alpha protein phosphorylation were also increased 3- and 4-fold, respectively, in hypertrophied hearts of mutant mice. cGMP levels were significantly reduced 5-fold in plasma and 10-fold in ventricular tissues of mutant mice hearts relative to wild-type controls. The present findings provide direct evidence that ablation of NPRA/cGMP signaling activates NF-kappaB binding activity associated with hypertrophic growth of mutant mice hearts.  相似文献   

2.
Pandey KN 《Peptides》2005,26(6):985-1000
One of the principal loci involved in the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), whose ligand-binding efficiency and GC catalytic activity vary remarkably in different target cells and tissues. In its mature form, NPRA resides in the plasma membrane and contains an extracellular ligand-binding domain, a single transmembrane region, and the intracellular protein kinase-like homology domain (KHD) and guanylyl cyclase (GC) catalytic domain. NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. Binding of ligand to NPRA triggers a complex array of signal transduction events and accelerates the endocytosis. The endocytic transport is important in regulating signal transduction, formation of specialized signaling complexes, and modulation of specific components of internalization events. The present review describes the experiments which reveal the internalization of ligand-receptor complexes of NPRA, receptor trafficking and recycling, and delivery of both ligand-receptor molecules into subcellular compartments. The ligand-receptor complexes of NPRA are finally degraded within the lysosomes. The experimental evidence provides a consensus forum, which establishes the endocytosis, cellular trafficking, sequestration, and metabolic processing of ANP/NPRA complexes in the intact cells. The discussion is afforded to address the experimental insights into the mechanisms that cells utilize in modulating the delivery and metabolic processing of ligand-bound NPRA into the cell interior.  相似文献   

3.
Garg R  Pandey KN 《Peptides》2005,26(6):1009-1023
  相似文献   

4.
5.
The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular ligand-binding domain, a transmembrane-spanning domain, a kinase homology domain (KHD) and a guanylyl cyclase domain. Because the presence of ATP or adenylylimidodiphosphate reduces atrial natriuretic peptide (ANP) binding and is required for maximal guanylyl cyclase activity, a direct interaction of ATP with the receptor KHD domain is plausible. Therefore, we investigated whether ATP interacts directly with a binding site on the receptor by analyzing the binding of a photoaffinity analog of ATP to membranes from human embryonic kidney 293 cells expressing the NPR-A receptor lacking the guanylyl cyclase moiety (DeltaGC). We demonstrate that this receptor (NPR-A-DeltaGC) can be directly labeled by 8-azido-3'-biotinyl-ATP and that labeling is highly increased following ANP treatment. The mutant receptor DeltaKC, which does not contain the KHD, is not labeled. Photoaffinity labeling of the NPR-A-DeltaGC is reduced by 50% in the presence of 550 microm ATP, and competition curve fitting studies indicate a Hill slope of 2.2, suggestive of cooperative binding. This approach demonstrates directly that the interaction of ANP with its receptor modulates the binding of ATP to the KHD, probably through a conformational change in the KHD. In turn, this conformational change is essential for maximal activity. In addition, the ATP analog, 8-azido-adenylylimidodiphosphate, inhibits guanylyl cyclase activity but increases ANP binding to the extracellular domain. These results suggest that the KHD regulates ANP binding and guanylyl cyclase activity independently.  相似文献   

6.
Liu C  Guan J  Kang Y  Xiu H  Chen Y  Deng B  Liu K 《PloS one》2010,5(12):e15607
Atrial natriuretic peptide (ANP) provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A), is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP) content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR) mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of water intake and revealed that the glucocorticoids can act centrally, as well as peripherally, to assist in the normalization of extracellular fluid volume.  相似文献   

7.
The guanylyl cyclase/natriuretic peptide receptor-A (NPRA), also referred to as GC-A, is a single polypeptide molecule. In its mature form, NPRA resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular cytoplasmic domain that contains a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic active site. The binding of atrial natriuretic peptide (ANP) to NPRA occurs at the plasma membrane; the receptor is synthesized on the polyribosomes of the endoplasmic reticulum, and is presumably degraded within the lysosomes. It is apparent that NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. This review describes the experiments addressing the interaction of ANP with the NPRA, the receptor-mediated internalization and stoichiometric distribution of ANP-NPRA complexes from cell surface to cell interior, and its release into culture media. It is hypothesized that after internalization, the ligand-receptor complexes dissociate inside the cell and a population of NPRA recycles back to plasma membrane. Subsequently, some of the dissociated ligand molecules escape the lysosomal degradative pathway and are released intact into culture media, which reenter the cell by retroendocytotic mechanisms. By utilizing the pharmacologic and physiologic perturbants, the emphasis has been placed on the cellular regulation and processing of ligand-receptor complexes in intact cells. I conclude the discussion by examining the data available on the utilization of deletion mutations of NPRA cDNA, which has afforded experimental insights into the mechanisms the cell utilizes in modulating the expression and functioning of NPRA.  相似文献   

8.

Background

The heparin-binding plasma protein histidine-rich glycoprotein (HRG; alternatively, HRGP/HPRG) can suppress tumor angiogenesis and growth in vitro and in vivo. Mice lacking the HRG gene are viable and fertile, but have an enhanced coagulation resulting in decreased bleeding times. In addition, the angiogenic switch is significantly enhanced in HRG-deficient mice.

Methodology/Principal Findings

To address whether HRG deficiency affects tumor development, we have crossed HRG knockout mice with the RIP1-Tag2 mouse, a well established orthotopic model of multistage carcinogenesis. RIP1-Tag2 HRG−/− mice display significantly larger tumor volume compared to their RIP1-Tag2 HRG+/+ littermates, supporting a role for HRG as an endogenous regulator of tumor growth. In the present study we also demonstrate that platelet activation is increased in mice lacking HRG. To address whether this elevated platelet activation contributes to the increased pathological angiogenesis in HRG-deficient mice, they were rendered thrombocytopenic before the onset of the angiogenic switch by injection of the anti-platelet antibody GP1bα. Interestingly, this treatment suppressed the increase in angiogenic neoplasias seen in HRG knockout mice. However, if GP1bα treatment was initiated at a later stage, after the onset of the angiogenic switch, no suppression of tumor growth was detected in HRG-deficient mice.

Conclusions

Our data show that increased platelet activation mediates the accelerated angiogenic switch in HRG-deficient mice. Moreover, we conclude that platelets play a crucial role in the early stages of tumor development but are of less significance for tumor growth once angiogenesis has been initiated.  相似文献   

9.
The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular domain with a ligand binding site, a transmembrane-spanning domain, a kinase homology domain, and a guanylyl cyclase domain. In response to agonists (atrial natriuretic peptide (ANP) and brain natriuretic peptide), the kinase homology domain-mediated guanylate cyclase repression is removed, which allows the production of cyclic GMP. Previous work from our laboratory strongly indicated that agonists are exerting their effects through the induction of a juxtamembrane dimeric contact. However, a direct demonstration of this mechanism remains to be provided. As a tool, we are now using the properties of a new mutation, D435C. It introduces a cysteine at a position in NPR-A corresponding to a supplementary cysteine found in NPR-C6, another receptor of this family (a disulfide-linked dimer). Although this D435C mutation only leads to trace levels of NPR-A disulfide-linked dimer at basal state, covalent dimerization can be induced by a treatment with rat ANP or with other agonists. The NPR-A(D435C) mutant has not been subjected to significant structural alterations, since it shares with the wild type receptor a similar dose-response pattern of cellular guanylyl cyclase activation. However, a persistent activation accompanies NPR-A(D435C) dimer formation after the removal of the inducer agonist. On the other hand, a construction where the intracellular domain of NPR-A(D435C) has been truncated (DeltaKC(D435C)) displays a spontaneous and complete covalent dimerization. In addition, the elimination of the intracellular domain in wild type DeltaKC and DeltaKC(D435C) is associated with an increase of agonist binding affinity, this effect being more pronounced with the weak agonist pBNP. Also, a D435C secreted extracellular domain remains unlinked even after incubation with rat ANP. In summary, these results demonstrate, in a dynamic fashion, the agonistic induction of a dimeric contact in the juxtamembrane domain of NPR-A. In addition, this process seems to require membrane attachment of the receptor. Finally, the intracellular domain represses this contact at the basal state, showing its potent influence on the outer juxtamembrane domain.  相似文献   

10.
Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field.  相似文献   

11.
D G Lowe 《Biochemistry》1992,31(43):10421-10425
The human natriuretic peptide receptor-A (NPR-A) guanylyl cyclase is specifically activated to synthesize cGMP by binding of atrial natriuretic peptide (ANP) to the receptor's extracellular domain. In this report, NPR-A monoclonal and polyclonal antibodies were used to assess the aggregation status of wild-type NPR-A and a truncation mutant lacking most of the NPR-A cytoplasmic domain. On intact human embryonic kidney 293 cells, in the absence of ANP, recombinant human NPR-A is self-aggregated through disulfide bonds in an M(r) > 500,000, possibly tetrameric, complex. Under nonreducing conditions, truncated NPR-A was a monomer, indicating that the cytoplasmic domain is necessary for NPR-A self-association. In the presence of the homobifunctional cross-linker dithiobis(succinimidyl propionate), or disuccimidyl suberate, truncated NPR-A could be cross-linked as a dimer and trimer only in the presence of ANP. Wild-type NPR-A was cross-linked with disuccinimidyl suberate to an M(r) > 500,000 species in the absence of ANP, and with ANP, a smaller, M(r) approximately 400,000 receptor trimer cross-linking product was observed, together with the larger, possibly tetrameric complex. When whole cell stimulation of cGMP production by ANP was tested on the low level of endogenous 293 cell NPR-A, maximal stimulation was observed regardless of truncated NPR-A overexpression. The absence of a dominant negative effect by the truncated NPR-A, together with the cross-linking data, demonstrates that preassociated NPR-A is the functionally relevant form of this receptor.  相似文献   

12.
The natriuretic peptide receptor-A (NPR-A) mediates natriuretic, hypotensive, and antihypertrophic effects of natriuretic peptides through the production of cGMP. In pathological conditions such as heart failure, these effects are attenuated by homologous and heterologous desensitization mechanisms resulting in the dephosphorylation of the cytosolic portion of the receptor. In contrast with natriuretic peptide-induced desensitization, pressor hormone-induced desensitization is dependent on protein kinase C (PKC) stimulation and (or) cytosolic calcium elevation. Mechanisms by which PKC and Ca(2+) promote NPR-A desensitization are not known. The role of cGMP and of the cytosolic Ca(2+) pathways in NPR-A desensitization were therefore studied. In contrast with the activation of NPR-A by its agonist, activation of soluble guanylyl cyclases of LLC-PK1 cells by sodium nitroprusside also leads to a production of cGMP but without altering NPR-A activation. Consequently, cGMP elevation per se does not appear to mediate homologous desensitization of NPR-A. In addition, cytosolic calcium increase is required only for the heterologous desensitization pathway since the calcium chelator BAPTA-AM blocks only PMA or ionomycin-induced desensitization. Calcineurin inhibitors block the NPR-A guanylyl cyclase heterologous desensitization induced by ionomycin, suggesting an essential role for this Ca(2+)-stimulated phosphatase in NPR-A desensitization. In summary, the present report demonstrates that neither cGMP nor Ca(2+) cytosolic elevation cause NPR-A homologous desensitization. Our results also indicate for the first time a role for calcineurin in NPR-A heterologous desensitization.  相似文献   

13.
Natriuretic peptide receptor A (NPR-A) is an essential cardiovascular regulator that is stimulated by atrial natriuretic peptide and B-type natriuretic peptide, whereas natriuretic peptide receptor B (NPR-B) stimulates long bone growth in a C-type natriuretic peptide-dependent manner. Many reports indicate that ATP is essential for NPR-A and NPR-B activation. Current models suggest that natriuretic peptide binding to receptor extracellular domains causes ATP binding to intracellular kinase homology domains, which derepresses adjacent catalytic domains. Here, we report 100-fold activations of natriuretic peptide receptors in the absence of ATP. The addition of a nonhydrolyzable ATP analog had no effect at early time periods (measured in seconds) but increased cGMP production about 2-fold after longer incubations (measured in minutes), consistent with a stabilization, not activation, mechanism. These data indicate that ATP does not activate natriuretic peptide receptors as has been repeatedly reported. Instead, ATP increases activity primarily by maintaining proper receptor phosphorylation status but also serves a previously unappreciated enzyme stabilizing function.  相似文献   

14.
Endocytosis is a prominent clathrin-mediated mechanism for concentrated uptake and internalization of ligand-receptor complexes, also known as cargo. Internalization of cargo is the fundamental mechanism for receptor-dependent regulation of cell membrane function, intracellular signal transduction, and neurotransmission, as well as other biological and physiological activities. However, the intrinsic mechanisms of receptor endocytosis and contemporaneous intracellular signaling are not well understood. We review emerging concepts of receptor endocytosis with concurrent intracellular signaling, using a typical example of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) internalization, subcellular trafficking, and simultaneous generation of second-messenger cGMP and signaling in intact cells. We highlight the role of short-signal motifs located in the carboxyl-terminal regions of membrane receptors during their internalization and subsequent receptor trafficking in organelles that are not traditionally studied in this context, including nuclei and mitochondria. This review sheds light on the importance of future investigations of receptor endocytosis and trafficking in live cells and intact animals in vivo in physiological context.  相似文献   

15.
Pandey KN 《The FEBS journal》2011,278(11):1792-1807
The cardiac hormones atrial natriuretic peptide and B-type natriuretic peptide (brain natriuretic peptide) activate guanylyl cyclase (GC)-A/natriuretic peptide receptor-A (NPRA) and produce the second messenger cGMP. GC-A/NPRA is a member of the growing family of GC receptors. The recent biochemical, molecular and genomic studies on GC-A/NPRA have provided important insights into the regulation and functional activity of this receptor protein, with a particular emphasis on cardiac and renal protective roles in hypertension and cardiovascular disease states. The progress in this field of research has significantly strengthened and advanced our knowledge about the critical roles of Npr1 (coding for GC-A/NPRA) in the control of fluid volume, blood pressure, cardiac remodeling, and other physiological functions and pathological states. Overall, this review attempts to provide insights and to delineate the current concepts in the field of functional genomics and signaling of GC-A/NPRA in hypertension and cardiovascular disease states at the molecular level.  相似文献   

16.
Ischemia-reperfusion (IR) causes human lung injury in association with the release of atrial and brain natriuretic peptides (ANP and BNP), but the role of ANP/BNP in IR lung injury is unknown. ANP and BNP bind to natriuretic peptide receptor-A (NPR-A) generating cGMP and to NPR-C, a clearance receptor that can decrease intracellular cAMP. To determine the role of NPR-A signaling in IR lung injury, we administered the NPR-A blocker anantin in an in vivo SWR mouse preparation of unilateral lung IR. With uninterrupted ventilation, the left pulmonary artery was occluded for 30 min and then reperfused for 60 or 150 min. Anantin administration decreased IR-induced Evans blue dye extravasation and wet weight in the reperfused left lung, suggesting an injurious role for NPR-A signaling in lung IR. In isolated mouse lungs, exogenous ANP (2.5 nM) added to the perfusate significantly increased the filtration coefficient sevenfold only if lungs were subjected to IR. This effect of ANP was also blocked by anantin. Unilateral in vivo IR increased endogenous plasma ANP, lung cGMP concentration, and lung protein kinase G (PKG(I)) activation. Anantin enhanced plasma ANP concentrations and attenuated the increase in cGMP and PKG(I) activation but had no effect on lung cAMP. These data suggest that lung IR triggered ANP release and altered endothelial signaling so that NPR-A activation caused increased pulmonary endothelial permeability.  相似文献   

17.
Atrial natriuretic peptide (ANP) activates guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which lowers blood pressure and blood volume. The objective of the present study was to visualize internalization and trafficking of enhanced GFP (eGFP)-tagged NPRA (eGFP–NPRA) in human embryonic kidney-293 (HEK-293) cells, using immunofluorescence (IF) and co-immunoprecipitation (co-IP) of eGFP–NPRA. Treatment of cells with ANP initiated rapid internalization and co-localization of the receptor with early endosome antigen-1 (EEA-1), which was highest at 5 min and gradually decreased within 30 min. Similarly, co-localization of the receptor was observed with lysosome-associated membrane protein-1 (LAMP-1); however, after treatment with lysosomotropic agents, intracellular accumulation of the receptor gradually increased within 30 min. Co-IP assays confirmed that the localization of internalized receptors occurred with subcellular organelles during the endocytosis of NPRA. Rab 11, which was used as a recycling endosome (Re) marker, indicated that ∼20% of receptors recycled back to the plasma membrane. ANP-treated cells showed a marked increase in the IF of cGMP, whereas receptor was still trafficking into the intracellular compartments. Thus, after ligand binding, NPRA is rapidly internalized and trafficked from the cell surface into endosomes, Res and lysosomes, with concurrent generation of intracellular cGMP.  相似文献   

18.
Natriuretic peptide receptor-A (NPR-A), a particulate guanylyl cyclase receptor, is composed of an extracellular domain (ECD) with a ligand binding site, a transmembrane spanning, a kinase homology domain (KHD), and a guanylyl cyclase domain. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), the natural agonists, bind and activate the receptor leading to cyclic GMP production. This receptor has been reported to be spontaneously dimeric or oligomeric. In response to agonists, the KHD-mediated guanylate cyclase repression is removed, and it is assumed that ATP binds to the KHD. Since NPR-A displays a pair of juxtamembrane cysteines separated by 8 residues, we hypothesized that the removal of one of those cysteines would leave the other unpaired and reactive, thus susceptible to form an interchain disulfide bridge and to favor the dimeric interactions. Here we show that NPR-AC423S mutant, expressed mainly as a covalent dimer, increases the affinity of pBNP for this receptor by enhancing a high affinity binding component. Dimerization primarily depends on ECD since a secreted NPR-A C423S soluble ectodomain (ECDC423S) also documents a covalent dimer. ANP binding to the unmutated ECD yields up to 80-fold affinity loss as compared with the membrane receptor. However, the ECD C423S mutation restores a high binding affinity. Furthermore, C423S mutation leads to cellular constitutive activation (20-40-fold) of basal catalytic production of cyclic GMP by the full-length mutant. In vitro particulate guanylyl cyclase assays demonstrate that NPR-AC423S displays an increased sensitivity to ATP treatment alone and that the effect of ANP + ATP joint treatment is cumulative instead of synergistic. Finally, the cellular and particulate guanylyl cyclase assays indicate that the receptor is desensitized to agonist stimulation. We conclude the following: 1) dimers are functional units of NPR-A guanylyl cyclase activation; and 2) agonists are inducing dimeric contact of the juxtamembranous region leading to the removal of the KHD-mediated guanylyl cyclase repression, hence allowing catalytic activation.  相似文献   

19.
Most of the physiological actions of atrial natriuretic peptide (ANP) may be attributed to activation of the natriuretic peptide receptor-A (NPR-A) guanylyl cyclase. We report here that truncation of the NPR-A cytoplasmic domain results in increased expression of cell surface ANP binding sites. The truncated receptor exhibited a hyperbolic time course for ANP binding and had a high affinity for [125I]hANP, Kd = 8 pM. Cells expressing truncated NPR-A were used as an immunogen to obtain monoclonal antibodies against the native conformation of the extracellular domain. These antibodies were used to select for high levels of stable NPR-A expression in 293 cells, by fluorescence-activated cell sorting. Disuccinimidyl suberate cross-linked [125I]ANP to 135-kDa NPR-A on intact cells. Monoclonal antibody immunoprecipitation of 35S-labeled proteins revealed NPR-A size heterogeneity, with 135- and 125-kDa species. A synthetic peptide antibody directed against the extracellular domain immunoprecipitated 125-kDa NPR-A, but recognized both sizes of receptor by Western blotting. The 125-kDa NPR-A did not bind to or cross-link ANP. NPR-A size variants were expressed on the cell surface, and heterogeneity was removed by deglycosylation with protein:N-glycosidase F. Our results suggest that the degree of N-linked glycosylation of the NPR-A extracellular domain influences the ability to bind ANP.  相似文献   

20.
Atrial natriuretic peptide (ANP) is the first described member of the natriuretic peptide hormone family. ANP elicits natriuretic, diuretic, vasorelaxant and antiproliferative effects, important factors in the control of blood pressure homeostasis. One of the principal loci involved in the regulatory action of ANP is the guanylyl cyclase-linked ANP-receptor which has been designated as NPRA, also referred to as GC-A, whose ANP-binding efficiency and guanylyl cyclase activity vary remarkably in different target tissues. However, the cellular and molecular basis of these activities and the functional expression and regulation of NPRA are not well understood. The mature form of receptor resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular protein kinase-like homology and guanylyl cyclase catalytic domains. In this review, emphasis has been placed on the interaction of ANP with NPRA, the ligand-mediated endocytosis, trafficking, and subcellular distribution of ligand-receptor complexes from cell surface to the intracellular compartments. Furthermore, it is implicated that after internalization, the ANP/NPRA complexes dissociate into the subcellular compartments and a population of receptor recycles back to the plasma membrane. This is an interesting area of research in the natriuretic peptide receptor field because there is currently debate over whether ANP/NPRA complexes internalize at all or whether cell utilizes some other mechanisms to release ANP from the bound receptor molecules. Indeed, controversy exist since it has been previously reported by default that among the three natriuretic peptide receptors only NPRC internalizes with bound ligand. Hence, from a thematic standpoint it is clearly evident that there is a current need to review this subject and provide a consensus forum that establishes the cellular trafficking, sequestration and processing of ANP/NPRA complexes in intact cells. Towards this aim the cellular life-cycle of NPRA will be described in the context of ANP-binding, internalization, metabolic processing, and/or inactivation, down-regulation, and degradation of ligand-receptor complexes in model cell systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号