首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The yeast MSH2-MSH6 complex is required to repair both base-pair and single base insertion/deletion mismatches. MSH2-MSH6 binds to mismatch substrates and displays an ATPase activity that is modulated by mispairs that are repaired in vivo. To understand early steps in mismatch repair, we analyzed mismatch repair (MMR) defective MSH2-msh6-F337A and MSH2-msh6-340 complexes that contained amino acid substitutions in the MSH6 mismatch recognition domain. While both heterodimers were defective in forming stable complexes with mismatch substrates, only MSH2-msh6-340 bound to homoduplex DNA with an affinity that was similar to that observed for MSH2-MSH6. Additional analyses suggested that stable binding to a mispair is not sufficient to initiate recruitment of downstream repair factors. Previously, we observed that MSH2-MSH6 forms a stable complex with a palindromic insertion mismatch that escapes correction by MMR in vivo. Here we show that this binding is not accompanied by either a modulation in MSH2-MSH6 ATPase activity or an ATP-dependent recruitment of the MLH1-PMS1 complex. Together, these observations suggest that early stages in MMR can be divided into distinct recognition, stable binding, and downstream factor recruitment steps.  相似文献   

2.
In eukaryotes the MSH2-MSH3 and MSH2-MSH6 heterodimers initiate mismatch repair (MMR) by recognizing and binding to DNA mismatches. The MLH1-PMS1 heterodimer then interacts with the MSH proteins at or near the mismatch site and is thought to act as a mediator to recruit downstream repair proteins. Here we analyzed five msh2 mutants that are functional in removing 3' non-homologous tails during double-strand break repair but are completely defective in MMR. Because non-homologous tail removal does not require MSH6, MLH1, or PMS1 functions, a characterization of the msh2 separation of function alleles should provide insights into early steps in MMR. Using the Taq MutS crystal structure as a model, three of the msh2 mutations, msh2-S561P, msh2-K564E, msh2-G566D, were found to map to a domain in MutS involved in stabilizing mismatch binding. Gel mobility shift and DNase I footprinting assays showed that two of these mutations conferred strong defects on MSH2-MSH6 mismatch binding. The other two mutations, msh2-S656P and msh2-R730W, mapped to the ATPase domain. DNase I footprinting, ATP hydrolysis, ATP binding, and MLH1-PMS1 interaction assays indicated that the msh2-S656P mutation caused defects in ATP-dependent dissociation of MSH2-MSH6 from mismatch DNA and in interactions between MSH2-MSH6 and MLH1-PMS1. In contrast, the msh2-R730W mutation disrupted MSH2-MSH6 ATPase activity but did not strongly affect ATP binding or interactions with MLH1-PMS1. These results support a model in which MMR can be dissected into discrete steps: stable mismatch binding and sensing, MLH1-PMS1 recruitment, and recycling of MMR components.  相似文献   

3.
The interaction of the Saccharomyces cerevisiae MSH2-MSH6 complex with mispaired bases was analyzed using gel mobility shift assays and surface plasmon resonance methods. Under equilibrium binding conditions, MSH2-MSH6 bound to homoduplex DNA with a K(d) of 3.9 nM and bound oligonucleotide duplexes containing T:G, +1, +2, +4, and +10 insertion/deletion loop (IDL) mispairs with K(d) values of 0.20, 0.25, 11, 3.2, and 0.55 nM, respectively. Competition binding experiments using 65 different substrates revealed a 10-fold range in mispair discrimination. In general, base-base mispairs and a +1 insertion/deletion mispair were recognized better than intermediate sized insertion/deletion mispairs of 2-8 bases. Larger IDL mispairs (>8 bases) were recognized almost as well as the +1 IDL mispair. Recognition of mispairs by MSH2-MSH6 was influenced by sequence context, with the 6-nucleotide region surrounding the mispair being primarily responsible for influencing mispair recognition. Effects of sequences as far away as 15 nucleotides were also observed. Differential effects of ATP on the stability of MSH2-MSH6-mispair complexes suggested that base-base mispairs and the smaller IDL mispairs were recognized by a different binding mode than larger IDL mispairs, consistent with genetic experiments indicating that MSH2-MSH6 functions primarily in the repair of base-base and small IDL mispairs.  相似文献   

4.
The Lac repressor-operator interaction was used as a reversible DNA end-blocking system in conjunction with an IAsys biosensor instrument (Thermo Affinity Sensors), which detects total internal reflectance and allows monitoring of binding and dissociation in real time, in order to develop a system for studying the ability of mismatch repair proteins to move along the DNA. The MSH2-MSH6 complex bound to a mispaired base was found to be converted by ATP binding to a form that showed rapid sliding along the DNA and dissociation via the DNA ends and also showed slow, direct dissociation from the DNA. In contrast, the MSH2-MSH6 complex bound to a base pair containing DNA only showed direct dissociation from the DNA. The MLH1-PMS1 complex formed both mispair-dependent and mispair-independent ternary complexes with the MSH2-MSH6 complex on DNA. The mispair-independent ternary complexes were formed most efficiently on DNA molecules with free ends under conditions where ATP hydrolysis did not occur, and only exhibited direct dissociation from the DNA. The mispair-dependent ternary complexes were formed in the highest yield on DNA molecules with blocked ends, required ATP and magnesium for formation, and showed both dissociation via the DNA ends and direct dissociation from the DNA.  相似文献   

5.
A number of studies have suggested a role for proliferating cell nuclear antigen (PCNA) in DNA mismatch repair (MMR). However, the majority of mutations in the POL30 gene encoding PCNA that cause MMR defects also cause replication and other repair defects that contribute to the increased mutation rate caused by these mutations. Here, 20 new pol30 mutants were identified and screened for MMR and other defects, resulting in the identification of two mutations, pol30-201 and pol30-204, that appear to cause MMR defects but little if any other defects. The pol30-204 mutation altered an amino acid (C81R) in the monomer-monomer interface region and resulted in a partial general MMR defect and a defect in MSH2-MSH6 binding in vitro. The pol30-201 mutation altered an amino acid (C22Y) located on the surface of the PCNA trimer that slides over the DNA but did not cause a defect in MSH2-MSH6 binding in vitro. The pol30-201 mutation caused an intermediate mutator phenotype. However, the pol30-201 mutation caused almost a complete defect in the repair of AC and GT mispairs and only a small defect in the repair of a "+T" insertion, an effect similar to that caused by an msh6Delta mutation, indicating that pol30-201 primarily effects MSH6-dependent MMR. The chromosomal double mutant msh3-FF>AA msh6-FF>AA eliminating the conserved FF residues of the PCNA interacting motif of these proteins caused a small (<10%) defect in MMR but showed synergistic interactions with mutations in POL30, indicating that the FF>AA substitution may not eliminate PCNA interactions in vivo. These results indicate that the interaction between PCNA and MMR proteins is more complex than was previously appreciated.  相似文献   

6.
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.  相似文献   

7.
Proliferating cell nuclear antigen (PCNA) is thought to play a role in DNA mismatch repair at the DNA synthesis step as well as in an earlier step. Studies showing that PCNA interacts with mispair-binding protein complexes, MSH2.MSH3 and MSH2.MSH6, and that PCNA enhances MSH2.MSH6 mispair binding specificity suggest PCNA may be involved in mispair recognition. Here we show that PCNA and MSH2.MSH6 form a stable ternary complex with a homoduplex (G/C) DNA, but MSH2.MSH6 binding to a heteroduplex (G/T) DNA disrupts MSH2.MSH6 binding to PCNA. We also found that the addition of ATP or adenosine 5'-O-(thiotriphosphate) restores MSH2.MSH6 binding to PCNA, presumably by disrupting MSH2.MSH6 binding to the heteroduplex (G/T) DNA. These results support a model in which MSH2.MSH6 binds to PCNA loaded on newly replicated DNA and is transferred from PCNA to mispaired bases in DNA.  相似文献   

8.
The heterodimeric human MSH2-MSH6 protein initiates DNA mismatch repair (MMR) by recognizing mismatched bases that result from replication errors. Msh2(G674A) or Msh6(T1217D) mice that have mutations in or near the ATP binding site of MSH2 or ATP hydrolysis catalytic site of MSH6 develop cancer and have a reduced lifespan due to loss of the MMR pathway (Lin, D. P., Wang, Y., Scherer, S. J., Clark, A. B., Yang, K., Avdievich, E., Jin, B., Werling, U., Parris, T., Kurihara, N., Umar, A., Kucherlapati, R., Lipkin, M., Kunkel, T. A., and Edelmann, W. (2004) Cancer Res. 64, 517-522; Yang, G., Scherer, S. J., Shell, S. S., Yang, K., Kim, M., Lipkin, M., Kucherlapati, R., Kolodner, R. D., and Edelmann, W. (2004) Cancer Cell 6, 139-150). Mouse embryonic fibroblasts from these mice retain an apoptotic response to DNA damage. Mutant human MutSα proteins MSH2(G674A)-MSH6(wt) and MSH2(wt)-MSH6(T1219D) are profiled in a variety of functional assays and as expected fail to support MMR in vitro, although they retain mismatch recognition activity. Kinetic analyses of DNA binding and ATPase activities and examination of the excision step of MMR reveal that the two mutants differ in their underlying molecular defects. MSH2(wt)-MSH6(T1219D) fails to couple nucleotide binding and mismatch recognition, whereas MSH2(G674A)-MSH6(wt) has a partial defect in nucleotide binding. Nevertheless, both mutant proteins remain bound to the mismatch and fail to promote efficient excision thereby inhibiting MMR in vitro in a dominant manner. Implications of these findings for MMR and DNA damage signaling by MMR proteins are discussed.  相似文献   

9.
Eukaryotic DNA mismatch repair   总被引:32,自引:0,他引:32  
Eukaryotic mismatch repair (MMR) has been shown to require two different heterodimeric complexes of MutS-related proteins: MSH2-MSH3 and MSH2-MSH6. These two complexes have different mispair recognition properties and different abilities to support MMR. Alternative models have been proposed for how these MSH complexes function in MMR. Two different heterodimeric complexes of MutL-related proteins, MLH1-PMS1 (human PMS2) and MLH1-MLH3 (human PMS1) also function in MMR and appear to interact with other MMR proteins including the MSH complexes and replication factors. A number of other proteins have been implicated in MMR, including DNA polymerase delta, RPA (replication protein A), PCNA (proliferating cell nuclear antigen), RFC (replication factor C), Exonuclease 1, FEN1 (RAD27) and the DNA polymerase delta and epsilon associated exonucleases. MMR proteins have also been shown to function in other types of repair and recombination that appear distinct from MMR. MMR proteins function in these processes in conjunction with components of nucleotide excision repair (NER) and, possibly, recombination.  相似文献   

10.
Oxidation of G in DNA yields 8-oxo-G (GO), a mutagenic lesion that leads to misincorporation of A opposite GO. In E. coli, GO in GO:C base pairs is removed by MutM, and A in GO:A mispairs is removed by MutY. In S. cerevisiae, mutations in MSH2 or MSH6 caused a synergistic increase in mutation rate in combination with mutations in OGG1, which encodes a MutM homolog, resulting in a 140- to 218-fold increase in the G:C-to-T:A transversion rate. Consistent with this, MSH2-MSH6 complex bound to GO:A mispairs and GO:C base pairs with high affinity and specificity. These data indicate that in S. cerevisiae, MSH2-MSH6-dependent mismatch repair is the major mechanism by which misincorporation of A opposite GO is corrected.  相似文献   

11.
Mismatch repair (MMR) is initiated by MutS family proteins (MSH) that recognize DNA mismatches and recruit downstream repair factors. We used a single-molecule DNA-unzipping assay to probe interactions between S. cerevisiae MSH2-MSH6 and a variety of DNA mismatch substrates. This work revealed a high-specificity binding state of MSH proteins for mismatch DNA that was not observed in bulk assays and allowed us to measure the affinity of MSH2-MSH6 for mismatch DNA as well as its footprint on DNA surrounding the mismatch site. Unzipping analysis with mismatch substrates containing an end blocked by lac repressor allowed us to identify MSH proteins present on DNA between the mismatch and the block, presumably in an ATP-dependent sliding clamp mode. These studies provide a high-resolution approach to study MSH interactions with DNA mismatches and supply evidence to support and refute different models proposed for initiation steps in MMR.  相似文献   

12.
Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2-MSH3 or MSH2-MSH6) or crossing over (MSH4-MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct complexes involving MLH3 are formed during murine meiosis. The first is a stable association between MLH3 and MLH1 and is involved in promoting crossing over in conjunction with MSH4-MSH5. The second complex involves MLH3 together with MSH2-MSH3 and localizes to repetitive sequences at centromeres and the Y chromosome. This complex is up-regulated in Pms2-/- males, but not females, providing an explanation for the sexual dimorphism seen in Pms2-/- mice. The association of MLH3 with repetitive DNA sequences is coincident with MSH2-MSH3 and is decreased in Msh2-/- and Msh3-/- mice, suggesting a novel role for the MMR family in the maintenance of repeat unit integrity during mammalian meiosis.  相似文献   

13.
DNA mismatch repair (MMR) models have proposed that MSH (MutS homolog) proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH (MutL homolog) proteins (primarily Mlh1-Pms1 in baker's yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20-30nm) unstructured arms that connect two terminal globular domains. These arms can vary between 100 and 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker's yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR.  相似文献   

14.
MutS homolog 2 (MSH2) is an essential DNA mismatch repair (MMR) protein. It interacts with MSH6 or MSH3 to form the MutSα or MutSβ complex, respectively, which recognize base-base mispairs and insertions/deletions and initiate the repair process. Mutation or dysregulation of MSH2 causes genomic instability that can lead to cancer. MSH2 is acetylated at its C terminus, and histone deacetylase (HDAC6) deacetylates MSH2. However, whether other regions of MSH2 can be acetylated and whether other histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in MSH2 deacetylation/acetylation is unknown. Here, we report that MSH2 can be acetylated at Lys-73 near the N terminus. Lys-73 is highly conserved across many species. Although several Class I and II HDACs interact with MSH2, HDAC10 is the major enzyme that deacetylates MSH2 at Lys-73. Histone acetyltransferase HBO1 might acetylate this residue. HDAC10 overexpression in HeLa cells stimulates cellular DNA MMR activity, whereas HDAC10 knockdown decreases DNA MMR activity. Thus, our study identifies an HDAC10-mediated regulatory mechanism controlling the DNA mismatch repair function of MSH2.  相似文献   

15.
Eukaryotic MutS homolog 6(MSH6) is a DNA mismatch recognition protein associated with mismatch repair of simple base-base mispairs and small insertion-deletion loops. As replication or recombination errors generated during embryonic development of living organisms should be efficiently corrected to maintain the integrity of genetic materials, we attempted to study MSH6 gene expression in developing zebrafish (Danio rerio) and the influence of MSH6 expression on the production of mismatch binding factors. A full-length cDNA encoding zebrafish MSH6 (zMSH6) was first obtained by rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of zMSH6 shares 57% and 56% identity with human and mouse MSH6, respectively. The 190-kDa recombinant zMSH6 containing 1,369 amino acids bound preferentially to a heteroduplex than to a homoduplex DNA. Northern blot and semiquantitative RT-PCR analysis detected apparent levels of zMSH6 mRNA expression in 12 and 36-hr-old zebrafish embryos, while this expression in 84-hr-old larvae was dramatically reduced to 23% of that in 12-hr-old embryos when beta-actin mRNA was constitutively synthesized. Incubation of G-T and G-G heteroduplex probes with 12 to 60-hr-old zebrafish extracts produced predominantly high-shifting binding complexes with very similar band intensity. Although low in zMSH6 mRNA production, the extracts of 84-hr-old larvae interacted significantly stronger than the embryonic extracts with both G-T and G-G mispairs, producing high and low-shifting complexes. Heteroduplex-recognition proteins in 108-hr-old larvae gave a similar pattern of mismatch binding. The intensities of G-T complexes produced by 84 and 108-hr-old zebrafish extracts were 2.5 to 3-fold higher than those of G-G complexes. Our data indicate that the production of efficient MSH6-independent binding factors, particularly G-T-specific recognition proteins, is upregulated in zebrafish at the larval stage when MSH6 gene activity is downregulated.  相似文献   

16.
DNA mismatch repair (MMR) couples recognition of base mispairs by MSH2.MSH6 heterodimers to initiation, hundreds of nucleotides away, of nascent strand 3'-5' or 5'-3' excision through the mispair. Mismatch-recognition complexes have been hypothesized to move along DNA to excision-initiation signals, in eukaryotes, perhaps ends of nascent DNA, or to remain at mismatches and search through space for initiation signals. Subsequent MMR excision, whether simple processive digestion of the targeted strand or tracking of an excision complex, remains poorly understood. In human cell-free extracts, we analyzed correction of a mismatch in a 2.2-kilobase pair (kbp) circular plasmid containing a pre-existing excision-initiation nick for initiation, and measured MMR excision (in the absence of exogenous dNTPs) at specific locations. Excision specificities were approximately 100:1 for nicked versus continuous strands, 80:1 for mismatched versus homoduplex DNA, and 30:1 for shorter (0.3-kbp) versus longer (1.9-kbp) nick-mispair paths. To test models for recognition-excision coupling and excision progress, we inserted potential blockades, 20-bp hairpins, into nick-mispair paths, using a novel technique to first generate gapped plasmid. Continuous strand longer-path hairpins did not affect mismatch correction, but shorter-path hairpins reduced correction 4-fold, and both together eliminated it. Shorter-path hairpins had little effect on initiation of (3'-5') excision, measured 30-60 nucleotides 5' to the nick, but blocked subsequent progress of excision to the mismatch; longer-path hairpins blocked the (lower level) 5'-3' excision to the mismatch. Thus, (a) MMR excision protein(s) cannot move past DNA hairpins. Hairpins at both ends of substrate-derived 0.5-kbp DNA fragments did not prevent ATP-induced dissociation of mismatch-bound human MSH2.MSH6, so recognition complexes at mismatches might provoke excision at nicks beyond hairpins, or loosely sliding MSH2.MSH6 dimers might move to the nicks.  相似文献   

17.
The mismatch repair (MMR) system, highly conserved throughout evolution, corrects nucleotide mispairing that arise during cellular DNA replication. We report here that proliferating cell nuclear antigen (PCNA), the clamp loader complex (RF-C), and a series of MMR proteins like MSH-2, MSH-6, MLH1, and hPSM2 can be assembled to Epstein-Barr virus replication compartments, the sites of viral DNA synthesis. Levels of the DNA-bound form of PCNA increased with progression of viral productive replication. Bromodeoxyuridine-labeled chromatin immunodepletion analyses confirmed that PCNA is loaded onto newly synthesized viral DNA as well as BALF2 and BMRF1 viral proteins during lytic replication. Furthermore, the anti-PCNA, -MSH2, -MSH3, or -MSH6 antibodies could immunoprecipitate BMRF1 replication protein probably via the viral DNA genome. PCNA loading might trigger transfer of a series of host MMR proteins to the sites of viral DNA synthesis. The MMR factors might function for the repair of mismatches that arise during viral replication or act to inhibit recombination between moderately divergent (homologous) sequences.  相似文献   

18.
Base-pair mismatches that occur during DNA replication or recombination can reduce genetic stability or conversely increase genetic diversity. The genetics and biophysical mechanism of mismatch repair (MMR) has been extensively studied since its discovery nearly 50 years ago. MMR is a strand-specific excision-resynthesis reaction that is initiated by MutS homolog (MSH) binding to the mismatched nucleotides. The MSH mismatch-binding signal is then transmitted to the immediate downstream MutL homolog (MLH/PMS) MMR components and ultimately to a distant strand scission site where excision begins. The mechanism of signal transmission has been controversial for decades. We have utilized single molecule Forster Resonance Energy Transfer (smFRET), Fluorescence Tracking (smFT) and Polarization Total Internal Reflection Fluorescence (smP-TIRF) to examine the interactions and dynamic behaviors of single Thermus aquaticus MutS (TaqMutS) particles on mismatched DNA. We determined that TaqMutS forms an incipient clamp to search for a mismatch in ∼1 s intervals by 1-dimensional (1D) thermal fluctuation-driven rotational diffusion while in continuous contact with the helical duplex DNA. When MutS encounters a mismatch it lingers for ∼3 s to exchange bound ADP for ATP (ADP  ATP exchange). ATP binding by TaqMutS induces an extremely stable clamp conformation (∼10 min) that slides off the mismatch and moves along the adjacent duplex DNA driven simply by 1D thermal diffusion. The ATP-bound sliding clamps rotate freely while in discontinuous contact with the DNA. The visualization of a train of MSH proteins suggests that dissociation of ATP-bound sliding clamps from the mismatch permits multiple mismatch-dependent loading events. These direct observations have provided critical clues into understanding the molecular mechanism of MSH proteins during MMR.  相似文献   

19.
DNA mismatch repair and mutation avoidance pathways   总被引:28,自引:0,他引:28  
Unpaired and mispaired bases in DNA can arise by replication errors, spontaneous or induced base modifications, and during recombination. The major pathway for correction of mismatches arising during replication is the MutHLS pathway of Escherichia coli and related pathways in other organisms. MutS initiates repair by binding to the mismatch, and activates together with MutL the MutH endonuclease, which incises at hemimethylated dam sites and thereby mediates strand discrimination. Multiple MutS and MutL homologues exist in eukaryotes, which play different roles in the mismatch repair (MMR) pathway or in recombination. No MutH homologues have been identified in eukaryotes, suggesting that strand discrimination is different to E. coli. Repair can be initiated by the heterodimers MSH2-MSH6 (MutSalpha) and MSH2-MSH3 (MutSbeta). Interestingly, MSH3 (and thus MutSbeta) is missing in some genomes, as for example in Drosophila, or is present as in Schizosaccharomyces pombe but appears to play no role in MMR. MLH1-PMS1 (MutLalpha) is the major MutL homologous heterodimer. Again some, but not all, eukaryotes have additional MutL homologues, which all form a heterodimer with MLH1 and which play a minor role in MMR. Additional factors with a possible function in eukaryotic MMR are PCNA, EXO1, and the DNA polymerases delta and epsilon. MMR-independent pathways or factors that can process some types of mismatches in DNA are nucleotide-excision repair (NER), some base excision repair (BER) glycosylases, and the flap endonuclease FEN-1. A pathway has been identified in Saccharomyces cerevisiae and human that corrects loops with about 16 to several hundreds of unpaired nucleotides. Such large loops cannot be processed by MMR.  相似文献   

20.
The eukaryotic mismatch repair (MMR) protein MSH6 exhibits a core region structurally and functionally similar to bacterial MutS. However, it possesses an additional N-terminal region (NTR), comprising a PCNA binding motif, a large region of unknown function and a nonspecific DNA binding fragment. Yeast NTR was recently described as an extended tether between PCNA and the core of MSH6 . In contrast, we show that human NTR presents a globular PWWP domain in the region of unknown function. We demonstrate that this PWWP domain binds double-stranded DNA, without any preference for mismatches or nicks, whereas its apparent affinity for single-stranded DNA is about 20 times lower. The S144I mutation, which in human MSH6 causes inherited somatic defects in MMR resulting in increased development of hereditary non polyposis colorectal cancer , is located in the DNA binding surface of the PWWP domain. However, it only moderately affects domain stability, and it does not perturb DNA binding in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号