首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-headed Tetrahymena 22S ciliary dynein was found to consist of three heavy chains (HCs) and decompose into two-headed and single-headed fragments upon chymotrypsin digestion. The three HCs (A alpha, A beta, and A gamma) were immunologically different, and presumed to be located on each of the head regions. The two-headed fragment contained A beta and A gamma HCs, while the A alpha HC originated in the single-headed fragment. Both fragments were associated with ATPase activity (Toyoshima, Y. (1987a) J. Cell Biol. 105, 887-895 and Toyoshima, Y. (1987b) J. Cell Biol. 105, 897-901). Using the two-headed dynein fragment, we attempted to determine the site of ATP hydrolysis in the fragment. After digestion of the fragment with 100 micrograms/ml thermolysin for 45 min, we noted eight thermolysin-digested polypeptides (TH 1, 2, 3, 4, 5 alpha, 5 beta, 6 alpha, and 6 beta). By precisely analyzing the degradation process and the products using peptide mapping, immunoblotting and high pressure liquid chromatography, it appeared that the two-headed fragment is dissociated as two separate fragments, each of which contained A beta or A gamma HC. Thermolysin digests, TH 1, 2, 5 alpha and 6 beta were found to be derived from A beta HC, while TH 3, 4, 5 beta and 6 alpha originated in the A gamma HC. Based on the measurements of ATPase activity of these polypeptides, we concluded that the ATPase site is located in the A beta and A gamma HCs, which may have their origins in each head of the two-headed fragment of Tetrahymena 22S ciliary dynein.  相似文献   

2.
Molecular composition of Tetrahymena ciliary dynein has been examined by electron microscopy and gel electrophoresis. SDS-urea gel electrophoresis revealed that Tetrahymena 22S dynein contains three (A alpha, A beta, and A gamma) heavy chains whereas 14S dynein contains only one. The molecular masses of 22S and 14S dynein heavy chains were estimated to be approximately 490 and 460 kD, respectively. Electron microscopy of negatively stained specimens showed 22S dynein has three globular heads and thin stalks, whereas 14S dynein consists of a single head. Chymotrypsin digested each of the three 22S dynein heavy chains into large fragments with different time courses. Sucrose density gradient centrifugation separated the digestion products as two peaks. The one with a larger sedimentation coefficient mainly consisted of two-headed particles having binding ability to doublet microtubules, whereas the other with a smaller sedimentation coefficient consisted of only isolated globular particles. Both fractions had ATPase activities. Thus, one active head of 22S dynein can be isolated by chymotrypsin digestion.  相似文献   

3.
An important challenge is to understand the functional specialization of dynein heavy chains. The ciliary outer arm dynein from Tetrahymena thermophila is a heterotrimer of three heavy chains, called alpha, beta and gamma. In order to dissect the contributions of the individual heavy chains, we used controlled urea treatment to dissociate Tetrahymena outer arm dynein into a 19S beta/gamma dimer and a 14S alpha heavy chain. The three heavy chains remained full-length and retained MgATPase activity. The beta/gamma dimer bound microtubules in an ATP-sensitive fashion. The isolated alpha heavy chain also bound microtubules, but this binding was not reversed by ATP. The 19S beta/gamma dimer and the 14S alpha heavy chain could be reconstituted into 22S dynein. The intact 22S dynein, the 19S beta/gamma dimer, and the reconstituted dynein all produced microtubule gliding motility. In contrast, the separated alpha heavy chain did not produce movement under a variety of conditions. The intact 22S dynein produced movement that was discontinuous and slower than the movement produced by the 19S dimer. We conclude that the three heavy chains of Tetrahymena outer arm dynein are functionally specialized. The alpha heavy chain may be responsible for the structural binding of dynein to the outer doublet A-tubule and/or the positioning of the beta/gamma motor domains near the surface of the microtubule track.  相似文献   

4.
Two dyneins can be extracted from Tetrahymena ciliary axonemes. The 22S dynein contains three heavy chains (HC), sediments at 22S in a sucrose gradient, and makes up the outer arms. The 14S dynein contains two to six HCs, sediments at 14S, and is thought to contribute to formation of the inner arms. We have identified two large proteins that are extracted from Tetrahymena axonemes with high salt and that sediment together at approximately 18S. The two large proteins cleave when subjected to UV light in the presence of ATP and vanadate, suggesting both proteins are dynein HC. Antibodies against one of the 18S HCs do not recognize 22S dynein HCs. Antibodies to 22S dynein HC do not bind appreciably to 18S dynein photocleavage fragments. Taken together, these results indicate that the large proteins that sediment at 18S are axonemal dynein heavy chains.  相似文献   

5.
Regulation of 22S dynein by a 29-kD light chain   总被引:5,自引:2,他引:3       下载免费PDF全文
Previously, a 29-kD axonemal polypeptide (p29) that copurifies with 22S dynein has been shown to be phosphorylated in a cAMP- and Ca(2+)- sensitive manner, consistent with a role for this molecule in the signal transduction cascade leading to fast forward swimming in Paramecium tetraurelia (Hamasaki, T., K. Barkalow, J. Richmond, and P. Satir. 1991. Proc. Natl. Acad. Sci. USA. 88:7912-7922). This study demonstrates the nature of the relationship between p29 and 22S dynein. Chaotropic agents can be used to separate p29 fractions from 22S dynein. When extracted p29 is exchanged into physiological buffers, it regains the ability to recombine with 22S dynein with an apparent dissociation constant of 25 nM; no recombination is seen with 14S dynein or with unrelated control proteins. p29 from Paramecium will also recombine with Tetrahymena 22 but not 14S dynein. After chymotryptic digestion of 22S dynein, p29 preferentially binds to a single-headed fragment, homologous to the alpha H chain of Tetrahymena 22S dynein. 22S dynein treated in vitro by Paramecium protein kinase A in the presence of cAMP and ATP to phosphorylate p29 translocates bovine brain microtubules significantly (1.53x; p < 0.001) faster than before phosphorylation. Similarly, 22S dynein reconstituted in vitro with thiophosphorylated p29 translocates microtubules significantly (1.31x; p < 0.001) faster than controls reconstituted with nonthiophosphorylated p29. p29 is the only moiety thiophosphorylated in the reconstituted dynein. We conclude that p29 functions as a 22S dynein regulatory light chain in that it alone is sufficient to control the rate of microtubule translocation by changes in its phosphorylation state.  相似文献   

6.
30-S dynein ATPase from Tetrahymena cilia was digested with trypsin (dynein: trypsin = 20:1, by weight) at 25 degrees C for 20 min, resulting in the release of a 12-S fragment possessing ATPase activity. The 12-S ATPase fraction obtained by sucrose gradient centrifugation contained several polypeptide chains as indicated by SDS gel electrophoresis. The largest chain was smaller than the subunit of 30-S dynein and almost the same size as 14-S dynein. On the other hand, when 14-S dynein was digested in a similar manner, its sedimentation value changed from 14 to 12 S, but the peak of ATPase activity was retained at 14 S, suggesting differences in amino acid sequences between the 30 and 14-S dyneins. When the time course of tryptic digestion of 30-S dynein was investigated in a trypsin:dynein ratio of 1:200, discrete fragmentation took place, producing an intermediate fragment of 24 S and the 12-S fragment. The 24-S fragment recombined with outer fibers to some extent, while the 12-S fragment lacked this ability. However, the 12-S fragment was somewhat stimulated to recombine with outer fibers in the presence of other components involved in the trypsin digest. The enzymatic characteristics of the 12-S fraction were different from those of 30-S dynein, especially the activity dependence on pH showing a typical bell-shaped curve.  相似文献   

7.
Conformational changes of the beta chain of the outer-arm dynein from sea urchin sperm flagella in relation to ATP hydrolysis was examined by tryptic digestion. Tryptic digestion of the beta chain in the presence of 2 mM ATP (ADP) and 100 microM vanadate (Vi) or in the presence of 4 mM ATP gamma S produced different polypeptides from in the case of no addition. The difference was similar to the result previously reported for 21S outer-arm dynein heavy chains [Inaba, K. & Mohri, H. (1989) J. Biol. Chem. 264, 8384-8388]. Unlike the tryptic digestion pattern of 21S dynein heavy chains, however, the 135-kDa polypeptide was consistently produced from the beta chain, even in the presence of ATP (ADP) and Vi. The tryptic digestion pattern of the 21S particle reconstituted from the separated a chain, the beta/IC1 complex and the IC2/IC3 complex [Tang, W.-J.Y., Bell, C.W., Sale, W.S., & Gibbons, I.R. (1982) J. Biol. Chem. 257, 508-515] was similar to that of intact 21S dynein; the 135-kDa polypeptide was only slightly produced in the presence of ATP and Vi. The digestion rate constant of the 135-kDa polypeptide from the beta chain in the presence of ATP and Vi was significantly decreased as compared with in the case of 21S dynein or that of the reconstituted 21S particle. These results suggest that the trypsin sensitivity of the 135-kDa region of the beta chain changes with the association of the beta/ICI complex with the alpha chain and the IC2/IC3 complex in the presence of ATP and Vi.  相似文献   

8.
The substrate specificity of dynein from Tetrahymena cilia   总被引:4,自引:0,他引:4  
The substrate specificity of the 22S dynein ATPase from Tetrahymena cilia was investigated. The 22S dynein exhibited a high specificity for ATP in terms of both apparent Km and Vmax: naturally occurring nucleoside triphosphates other than ATP were hydrolyzed slowly with an apparent Km of 0.25-1 mM, a sharp contrast to that of ATP hydrolysis (1-4 microM). Pyrophosphate was a poor inhibitor for the dynein ATPase, indicating weak affinity. Since dynein binds ATP tightly and hydrolyzes it at a high rate, a method to determine a trace amount of ATP in the presence of other nucleoside triphosphates has been developed by taking advantage of this enzymatic characteristic of dynein. The effect of P1,P5-di(adenosine-5'-)-pentaphosphate (Ap5A) on the 22S dynein ATPase was also investigated. Ap5A acted as a weak competitive inhibitor of the ciliary 22S dynein ATPase and the nonlinearity of the double-reciprocal plot of the ATPase was confirmed in the presence of Ap5A.  相似文献   

9.
Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N + 1) tipward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. The 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2+, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

10.
The ATPase (EC 3.6.1.3) activity of 30 S dynein from Tetrahymena cilia was remarkably stimulated by porcine brain tubulin at pH 10. The activity increased with increasing concentration of tubulin until the molar ratio of tubulin dimer to 30 S dynein reached approx. 10. The optimum of the ATPase activity of 30 S dynein in the presence of tubulin was 1-2 mM for MgCl2 and 2 mM for CaCl2. Increasing ionic strength gradually inhibited the stimulation effects of tubulin. Activation energies of 30 S dynein in the presence and absence of tubulin were almost the same. At the temperatures beyond 25 degrees C stimulation effects of tubulin disappeared. ATP was a specific substrate even in the presence of tubulin. In kinetic investigations parallel reciprocal plots were observed in a constant ratio of divalent cations to ATP of 2, indicating that tubulin was less tightly bound to 30 S dynein in the presence of ATP than the absence. The similar results were obtained at pH 8.2. 14 S dynein and the 12 S fragment which have poor ability to recombine with outer fibers were also activated with brain tubulin.  相似文献   

11.
NH2-terminal analysis of the alpha and beta heavy chain polypeptides (Mr greater than 400,000) from the outer arm dynein of sea urchin sperm flagella, compared with that of the 230,000- and 200,000-Mr peptides formed upon photocleavage of dynein by irradiation at 365 nm in the presence of vanadate and ATP, shows that the NH2 termini of the intact chains are acetylated and that the 230,000- and 200,000 Mr peptides constitute the amino- and carboxy-terminal portions of the heavy chains, respectively. Tryptic digestion of the beta heavy chain is known to separate it into two particles, termed fragments A and B, that sediment at 12S and 6S (Ow, R. A., W.-J. Y. Tang, G. Mocz, and I. R. Gibbons, 1987. J. Biol. Chem. 262:3409-3414). Immunoblots against monoclonal antibodies specific for epitopes on the beta heavy chain, used in conjunction with photoaffinity labeling, show that the ATPase-containing fragment A is derived from the amino-terminal region of the beta chain, with the two photolytic sites thought to be associated with the purine-binding and the gamma-phosphate-binding areas of the ATP-binding site spanning an approximately 100,000 Mr region near the middle of the intact beta chain. Fragment B is derived from the complementary carboxy-terminal region of the beta chain.  相似文献   

12.
Tetrahymena cilia contain a three-headed 22S (outer arm) dynein and a single-headed 14S dynein. In this study, we have employed an in vitro assay of microtubule translocation along dynein-coated glass surfaces to characterize the motile properties of 14S dynein, 22S dynein, and proteolytic fragments of 22S dynein. Microtubule translocation produced by intact 22S dynein and 14S dynein differ in a number of respects including (a) the maximal velocities of movement; (b) the ability of 22S dynein but not 14S dynein to utilize ATP gamma S to induce movement; (c) the optimal pH and ionic conditions for movement; and (d) the effects of Triton X-100 on the velocity of movement. These results indicate that 22S and 14S dyneins have distinct microtubule translocating properties and suggest that these dyneins may have specialized roles in ciliary beating. We have also explored the function of the multiple ATPase heads of 22S dynein by preparing one- and two-headed proteolytic fragments of this three-headed molecule and examining their motile activity in vitro. Unlike the single-headed 14S dynein, the single-headed fragment of 22S dynein did not induce movement, even though it was capable of binding to microtubules. The two-headed fragment, on the other hand, translocated microtubules at velocities similar to those measured for intact 22S dynein (10 microns/sec). This finding indicates that the intact three-headed structure of 22S dynein is not essential for generating microtubule movement, which raises the possibility that multiple heads may serve some regulatory function or may be required for maximal force production in the beating cilium.  相似文献   

13.
Calmodulin confers calcium sensitivity on ciliary dynein ATPase   总被引:8,自引:7,他引:1       下载免费PDF全文
Extraction of demembranated cilia of Tetrahymena by Tris-EDTA (denoted by the suffix E) yields 14S-E and 30S-E dyneins with ATPase activities that are slightly increased by Ca++. This effect is moderately potentiated when bovine brain calmodulin is added to the assay mixture. Extraction with 0.5 M KCl (denoted by the suffix K) yeilds a 14S-K dynein with a low basal ATPase activity in the presence of Ca++. Subsequent addition of calmodulin causes marked activation (up to 10- fold) of ATPase activity. Although 14S-K and 14S-E dyneins have Ca++- dependent ATPase activities that differ markedly in the degree of activation, the concentration of calmodulin required for half-maximal saturation is similar for both, approximately 0.1 microM. Both 30S-K and 30S-E dyneins, however, require approximately 0.7 microM bovine brain calmodulin to reach half-maximal activation of their Ca++- dependent ATPase activities. Tetrahymena calmodulin is as effective as bovine brain calmodulin in activating 30S dynein , but may be slightly less effective than the brain calmodulin in activating 14S dynein. Rabbit skeletal muscle troponin C also activates the Ca++-dependent ATPase activity of 30S dynein and, to a lesser extent, that of 14S dynein, but in both cases is less effective than calmodulin. The interaction of calmodulin with dynein that results in ATPase activation is largely complete in less than 1 min, and is prevented by the presence of low concentrations of ATP. Adenylyl imidodiphosphate can partially prevent activation of dynein ATPase by calmodulin plus Ca++, but at much higher concentrations than required for prevention by ATP. beta, gamma-methyl-adenosine triphosphate appears not to prevent this activation. The presence of Ca++-dependent calmodulin-binding sites on 14S and 30S dyneins was demonstrated by the Ca++-dependent retention of the dyneins on a calmodulin-Sepharose-4B column. Gel electrophoresis of 14S dynein that had been purified by the affinity-chromatography procedure showed that presence of two major and one minor high molecular weight components. Similar analysis of 30S dynein purified by this procedure also revealed on major and one minor high molecular weight components that were different from the major components of 14S dynein. Ca++-dependent binding sites for calmodulin were shown to be present on axonemes that had been extracted twice with Tris-EDTA or with 0.5 M KCl by the use of 35S-labeled Tetrahymena calmodulin. It is concluded that the 14S and 30S dyneins of Tetrahymena contain Ca++- dependent binding sites for calmodulin and the calmodulin mediates the Ca++-regulation of the dynein ATPases of Tetrahymena cilia.  相似文献   

14.
G Mocz  I R Gibbons 《Biochemistry》1990,29(20):4839-4843
The circular dichroic spectra of outer arm dynein from sea urchin sperm flagella, of its separated alpha and beta heavy-chain complexes, and of the two major fragments produced by tryptic digestion of the beta heavy chain have been measured over the range 190-240 nm. Although the spectra show significant individuality, in all cases they qualitatively resemble those of typical globular proteins with mixed regions of alpha-helix and beta-sheet (alpha/beta-type structure) or with separate alpha-helix- and beta-sheet-rich regions (alpha+beta-type structure). Quantitative analyses of the spectra by both constrained and unconstrained least-squares curve-fitting procedures indicate that the intact dynein contains approximately 26% alpha-helix. The separated beta heavy-chain complex and its ATPase-containing amino-terminal domain (fragment A) both have spectra resembling that of intact dynein, and they appear to contain 32% and 23% alpha-helix, respectively. The carboxy-terminal domain of the beta heavy chain (fragment B) and the separated alpha heavy chain have significantly different spectra; however, they each appear to contain 26-36% alpha-helix. These data suggest that dynein does not contain an extensive alpha-helical domain, such as is found in the carboxy-terminal rod region of the other motor proteins myosin and kinesin.  相似文献   

15.
The phosphorothioate analog of ATP has a sulfur atom replacing a non-bridging oxygen atom of the triphosphate moiety of ATP. Due to the tetrahedral nature of the phosphorus atom, stereoisomers are known to exist, designated as the Sp and Rp isomers. We have reported [Shimizu & Furusawa (1986) Biochemistry 25, 5787] on the hydrolytic activity of the 22S dynein from Tetrahymena cilia towards the phosphorothioate analogs of ATP. In this paper, we extend our study and report on the microtubule-dynein dissociation by these analogs and on their ability to support sea urchin flagellar dynein enzymatic activity as well as ciliary or flagellar motility. It has been shown that the microtubule--22S-dynein complex is dissociated by the binding of ATP to the dynein enzymatic sites [Porter & Johnson (1983) J. Biol. Chem. 258, 6575]. We studied the dissociation by adenosine 5'-[alpha-thio]triphosphate (ATP[alpha S]), Sp or Rp, by light-scattering stopped-flow methods. The dissociation by (Sp)ATP[alpha S] was rapid and the rate of the light-scattering change by (Sp)ATP[alpha S] was a hyperbolic function of the nucleotide concentration, indicating that dissociation was a two-step process. On the other hand, (Rp)ATP[alpha S] up to 2 mM induced only slow and partial dissociation of the complex, while, in the presence of vanadate, it induced complete dissociation with a slightly higher rate (0.5 s-1). The adenosine 5'-[beta-thio]triphosphate (ATP[beta S]) isomers did not induce dissociation. The hydrolytic activity of the outer arm dynein from sea urchin sperm flagella towards these analogs was similar to that of 22S dynein. The ratios of Vmax (nmol.mg protein-1.min-1)/apparent Km (microM) of this dynein were 400-720, 53, 9.7, 0.62 and 0.028 for ATP, ATP[alpha S] (Sp or Rp), ATP[beta S] (Sp or Rp), respectively, in the presence of Mg2+ as the supporting cation. This dynein exhibited the same stereospecificity at beta phosphate as the 22S dynein or myosin. The detergent models of Tetrahymena or sea urchin spermatozoa were reactivated only by ATP or (Sp)ATP[alpha S] while other analogs were ineffective. The maximal beat frequency of the cilia or flagella reactivated by (Sp)ATP[alpha S] was one-quarter to one-half of that produced by ATP reactivation.  相似文献   

16.
The immunological relation between 14 S dynein and 30 S dynein obtained from Tetrahymena cilia was investigated by using antisera specific for each dynein subunit or some dynein subunits separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Although 14 and 30 S dynein main subunits have different electrophoretic mobilities, our immunodiffusion tests showed that there exists a close immunological relation between them. At least three immunologically different polypeptides designated polypeptides A, B and C are included in the 30 S dynein main band which has been recognized as a single component by electrophoresis, and that the polypeptides designated A',B' and C' are included in the 14 S dynein main bands. Polypeptides A and A',B and B', or C and C' appeared to have a certain common antigenic determinant(s). Polypeptide C of 30 S dynein was shown to possess a certain antigenic determinant(s) specific for 30 S dynein, besides the determinant common with that of polypeptide C' of 14S dynein. The second main component of 30 S dynein proved to be a specific polypeptide of 30 S dynein but not to be a degraded product of the main polypedtide. All antisera reacted with native dynein molecules to some extent, but did not inhibit dynein ATPase (ATP phosphohydrase, EC 3.6.1.3) activity significantly.  相似文献   

17.
Dynein is the large molecular motor that translocates to the (-) ends of microtubules. Dynein was first isolated from Tetrahymena cilia four decades ago. The analysis of the primary structure of the dynein heavy chain and the discovery that many organisms express multiple dynein heavy chains have led to two insights. One, dynein, whose motor domain comprises six AAA modules and two potential mechanical levers, generates movement by a mechanism that is fundamentally different than that which underlies the motion of myosin and kinesin. And two, organisms with cilia or flagella express approximately 14 different dynein heavy chain genes, each gene encodes a distinct dynein protein isoform, and each isoform appears to be functionally specialized. Sequence comparisons demonstrate that functionally equivalent isoforms of dynein heavy chains are well conserved across species. Alignments of portions of the motor domain result in seven clusters: (i) cytoplasmic dynein Dyhl; (ii) cytoplasmic dynein Dyh2; (iii) axonemal outer arm dynein alpha; (iv) outer arm dyneins beta and gamma; (v) inner arm dynein 1alpha; (vi) inner arm dynein 1beta; and (vii) a group of apparently single-headed inner arm dyneins. Some of the dynein groups contained more than one representative from a single organism, suggesting that these may be tissue-specific variants.  相似文献   

18.
We have previously shown that Ca(2+) directly activates ATP-sensitive microtubule binding by a Chlamydomonas outer arm dynein subparticle containing the beta and gamma heavy chains (HCs). The gamma HC-associated LC4 light chain is a member of the calmodulin family and binds 1-2 Ca(2+) with K(Ca) = 3 x 10(-5) M in vitro, suggesting it may act as a Ca(2+) sensor for outer arm dynein. Here we investigate interactions between the LC4 light chain and gamma HC. Two IQ consensus motifs for binding calmodulin-like proteins are located within the stem domain of the gamma heavy chain. In vitro experiments indicate that LC4 undergoes a Ca(2+)-dependent interaction with the IQ motif domain while remaining tethered to the HC. LC4 also moves into close proximity of the intermediate chain IC1 in the presence of Ca(2+). The sedimentation profile of the gamma HC subunit changed subtly upon Ca(2+) addition, suggesting that the entire complex had become more compact, and electron microscopy of the isolated gamma subunit revealed a distinct alteration in conformation of the N-terminal stem in response to Ca(2+) addition. We propose that Ca(2+)-dependent conformational change of LC4 has a direct effect on the stem domain of the gamma HC, which eventually leads to alterations in mechanochemical interactions between microtubules and the motor domain(s) of the outer dynein arm.  相似文献   

19.
Ciliary beat frequency is primarily regulated by outer arm dyneins (22 S dynein). Chilcote and Johnson (Chilcote, T. J., and Johnson, K. A. (1990) J. Biol. Chem. 256, 17257-17266) previously studied isolated Tetrahymena 22 S dynein, identifying a protein p34, which showed cAMP-dependent phosphorylation. Here, we characterize the molecular biochemistry of p34 further, demonstrating that it is the functional ortholog of the 22 S dynein regulatory light chain, p29, in Paramecium. p34, thiophosphorylated in isolated axonemes in the presence of cAMP, co-purified with 22 S dynein and not with inner arm dynein (14 S dynein). Isolated 22 S dynein containing phosphorylated p34 showed approximately 70% increase in in vitro microtubule translocation velocity compared with its unphosphorylated counterpart. Extracted p34 rebound to isolated 22 S dynein from either Tetrahymena or Paramecium but not to 14 S dynein from either ciliate. Binding of radiolabeled p34 to 22 S dynein was competitive with p29. Phosphorylated p34 was not present in axonemes isolated from a mutant lacking outer arms. Two-dimensional gel electrophoresis followed by phosphorimaging revealed at least five phosphorylated p34-related spots, consistent with multiple phosphorylation sites in p34 or perhaps multiple isoforms of p34. These new features suggest that a class of outer arm dynein light chains including p34 regulates microtubule sliding velocity and consequently ciliary beat frequency through phosphorylation.  相似文献   

20.
Irradiation of outer arm dynein ATPase from sea urchin sperm tail flagella at 365-410 nm in the presence of Fe(III)-gluconate complex and ATP produces photolytic cleavage at two distinct sites on the beta heavy chain, located approximately 250 and approximately 230 kDa from its amino terminus. The former cut is close to or identical with the V1 site of the vanadate-mediated photocleavage (Gibbons, I.R., Lee-Eiford, A., Mocz, G., Phillipson, C. A., Tang, W.-J.Y., and Gibbons, B.H. (1987) J. Biol. Chem. 262, 2780-2786. The rate of photolysis shows a hyperbolic dependence on Fe(III)-gluconate concentration with half-maximal rate occurring at 23 microM at pH 6.3. In the presence of 0.1-0.5 mM Fe(III)-gluconate-ATP, approximately 58% of the beta chain becomes cleaved with a half-time of about 34 s; the remainder of the beta chain and almost all of the alpha chain are resistant to cleavage. This photolytic cleavage of the beta chain is accompanied by an approximately parallel loss of the dynein latent ATPase activity, whereas the Triton-activated ATPase is lost to a somewhat greater extent. Mg2+ concentrations above approximately 3 mM inhibit photolysis. Substitution of ADP for ATP changes the pattern of cleavage so that both the alpha and beta heavy chain undergo scission but at the 250-kDa site only. AMP, adenyl-5'-yl imidodiphosphate and Fe(II) do not support cleavage at either site. Trivalent rhodium-ATP complexes, as models of MgATP, can also catalyze photolysis of the beta chain at the 250-kDa site. These results suggest that photolysis results from the activation of an Fe(III)-ATP complex bound to the hydrolytic ATP binding site of the beta chain and that both Fe(III) cleavage sites are located close to the nucleotide binding site in the tertiary folding of the beta heavy chain. The cleavage reaction possibly involves initial photoreduction of Fe(III) bound at the Mg2+ binding site in the dynein.Fe.ATP complex, followed by covalent modification of an amino acid side chain that leads to eventual peptide scission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号