首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Isothermal lipid phase transitions   总被引:1,自引:0,他引:1  
In liotropic lipid systems phase transitions can be induced isothermally by changing the solvent concentration or composition; alternatively, lipid composition can be modified by (bio)chemical means. The probability for isothermal phase transitions increases with the decreasing transition entropy; it is proportional to the magnitude of the transition temperature shift caused by transformation-inducing system variation. Manipulations causing large thermodynamic effects, such as lipid (de)hydration, binding of protons or divalent ions and macromolecular adsorption, but also close bilayer approach are, therefore, likely to cause structural lipid change(s) at a constant temperature. Net lipid charges enhance the membrane susceptibility to salt-induced isothermal phase transitions; a large proportion of this effect is due to the bilayer dehydration, however, rather than being a consequence of the decreased Coulombic electrostatic interactions. Membrane propensity for isothermal phase transitions, consequently, always increases with the hydrophilicity of the lipid heads, as well as with the desaturation and shortening of the lipid chains. Upon a phase change at a constant temperature, some of the interfacially bound solutes (e.g. protons or calcium) are released in the solution. Membrane permeability and fusogenicity simultaneously increase. In mixed systems, isothermal phase transitions, moreover, may result in lateral phase separation. All this opens up ways for the involvement of isothermal phase transitions in the regulation of biological processes.  相似文献   

2.
Synchrotron radiation was used to follow the time course of the transitions, induced by temperature jump, in Escherichia coli membranes and their lipid extracts isolated from a fatty acid auxotroph grown with different fatty acids. We measured the relaxation times associated with the phase transitions as well as with the conformational transition of the hydrocarbon chains and observed different behavior as a function of chemical composition. Relaxation times of about 1-2 s were found at a hexagonal to lamellar phase transition and within a lamellar phase whose parameters display important variations with temperature when the conformational transition takes place. On the other hand, no delay was observed for a phase transition where large lipid or water diffusion was not needed. We have shown that phase transitions and conformational transitions are, to a large extent, uncoupled and that the relaxation times corresponding to the latter transition could be related to the size of the ordered domains. In all cases, the order to disorder conformational transition is more rapid than the disorder to order transition. Finally, the relaxation times of the disorder to order transition observed with the membranes and with their lipid extracts were found to be strongly correlated, indicating that the proteins do not play a role in this transition.  相似文献   

3.
Phosphatidylethanolamines are known to exhibit asymmetric phase transitions with a low temperature shoulder. However, in this work we demonstrate that suspensions of dielaidoylphosphatidylethanolamine can be prepared which exhibit very sharp and only slightly asymmetric phase transitions. Such preparations are made either by isolating a rapidly sedimenting fraction of a vortexed suspension of this lipid or by dialyzing a suspension which had been hydrated at pH 9.2 to pH 7.2. Smaller aggregates of the lipid can be isolated from the supernate of a vortexed suspension of dielaidoylphosphatidylethanolamine after removal of the rapidly sedimenting fraction or it can be produced by sonication of a sample at pH 9.2 followed by dialysis to pH 7.2 Such preparations exhibit very broad transitions and the transition temperature is shifted to lower values. These results demonstrate that the shape of the phase transition of dielaidoylphosphatidylethanolamine is particularly sensitive to the method of sample preparation. Furthermore, an asymmetric phase transition with a low temperature shoulder is not necessarily an intrinsic property of phosphatidylethanolamines.  相似文献   

4.
The demonstrated existence and possible physiological relevance of mesomorphic phase transitions in cellular membranes suggests that a theoretical understanding of lipid phase behavior is biologically relevant. As a step in this direction, the gel to liquid crystal phase transition of phospholipid bilayers is examined. A qualitative mechanism involving configurational coupling of the lipid hydrocarbon chains is proposed to explain the transition. The predictions of the mechanism which pertain to the structure of the liquid crystal are explored and found to be in accord with the present experimental view of this phase.  相似文献   

5.
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems.  相似文献   

6.
The basic protein of myelin can spontaneously associate with the synthetic phospholipid N-palmitoyl-sphingosinephosphatidylcholine. The protein alters the phase transition properties of the lipid from a single transition at 41.5 degrees C to two overlapping transitions, one being slightly above and the other slightly below the transition temperature of the pure lipid. The effect was not seen upon the addition of poly(L-lysine) to this lipid nor does the myelin basic protein alter the phase transition properties of dimyristoylphosphatidylcholine. The results thus demonstrate that the myelin basic protein can interact with a major zwitterionic lipid component of myelin in addition to acidic phospholipids.  相似文献   

7.
The interaction of melittin, a polypeptide consisting of 26 amino acid residues, with dimyristoyl phosphatidylcholine bilayers was investigated by vibrational Raman spectroscopy. Spectral peak height intensity ratios, involving vibrational transitions in both the 3000 cm?1 acyl chain methylene carbon-hydrogen stretching mode region and the 1100 cm?1 acyl chain carbon-carbon skeletal stretching mode interval, served as temperature profile indices for monitoring the bilayer order-disorder processes. For a lipid : melittin molar ratio of 14 : 1 two order-disorder transitions were observed. In comparison to a gel to liquid crystalline phase transition of 22.5°C for the pure lipid, the lower transition, exhibiting a 2°C width, is centered at 17°C and is associated with a depression of the main lipid phase transition of dimyristoyl phosphatidylcholine. The second thermal transition, displaying a 7°C interval, occurs at approx. 29°C and is associated with the melting behavior of approximately seven immobilized boundary lipids which surround the inserted hydrophobic segment of the polypeptide. For a lipid : melittin molar ratio of 10 : 1 two thermal transitions are also observed at 11 and 30°C. As before, they represent, respectively, the main gel to liquid crystalline phase transition and the melting behavior of approximately four boundary lipids attached to melittin. From these data alternative schemes are suggested for disposing the immobilized lipids around the hydrophobic portion of the polypeptide within the bilayer.  相似文献   

8.
P J Quinn 《Cryobiology》1985,22(2):128-146
An hypothesis is proposed to explain the damage caused to biological membranes exposed to low temperatures. The thesis rests on the general observation that the lipid components of most membranes are heterogeneous and undergo phase transitions from gel-phase lamellae to liquid-crystalline lamellae and some to a non-lamellar, hexagonal-II phase over a wide range of temperatures. As a consequence of these phase transitions the lateral distribution of the lipids characteristic of the growth temperature is disturbed and redistribution takes place on the basis of the temperature at which phase transitions occur. When membranes are cooled, first the non-lamellar forming lipids pass through a transition to a fluid lamellar phase and are miscible with bilayer-forming lipids into which they diffuse. On further cooling the high-melting-point lipids begin to crystallize and separate into a lamellar gel phase, in the process excluding the low-melting point lipids and intrinsic proteins. The lipids in these remaining regions form a gel phase at the lowest temperature. It is suggested that, because the non-lamellar lipids tend to undergo a liquid-crystalline to gel-phase transition at higher temperatures than lamellar-forming lipids, these will tend to phase separate into a gel phase domain rich in these lipids. Damage results when the membrane is reheated, whereupon the hexagonal-II-forming lipids give rise to non-lamellar structures. These probably take the form of inverted micelles sandwiched within the lipid bilayer and they completely destroy the permeability barrier properties of the membrane. The model is consistent with the phase behavior of membrane lipids and the action of cryoprotective agents in modifying lipid phase properties.  相似文献   

9.
The basic protein of myelin can spontaneously associate with the synthetic phospholipid N-palmitoylsphingosinephosphatidylcholine. The protein alters the phase transition properties of the lipid from a single transition at 41.5°C to two overlapping transitions, one being slightly above and the other slightly below the transition temperature of the pure lipid. The effect was not seen upon the addition of poly(l-lysine) to this lipid nor does the myelin basic protein alter the phase transition properties of dimyristoylphosphatidylcholine. The results thus demonstrate that the myelin basic protein can interact with a major zwitterionic lipid component of myelin in addition to acidic phospholipids.  相似文献   

10.
The first thermodynamic measurements of the intensity of light emission associated with native lipid peroxidation in a biological membrane are described. Kinetics of the radical chain reaction are shown to be sensitive to membrane structural phase and lipid dynamics. This is demonstrated by a novel measurement of a phase transition in the membrane of the intact mammalian nucleus. The apparent activation energies of lipid peroxidation in this system are also obtained for the first time. We suggest that this measurement may be more generally applicable as a method for monitoring membrane phase transitions.  相似文献   

11.
Measuring the kinetics of membrane phase transitions   总被引:2,自引:0,他引:2  
This article presents a brief review of literature on the physical chemistry of lipid phase transitions with emphasis on their kinetic properties. The theoretical foundations of perturbation techniques, and specifically the volume-perturbation technique are discussed in some detail. These are presented as a rationale for, and introduction to, a volume-perturbation kinetic calorimeter that we have constructed for measurement of the kinetics of lipid phase transitions. The instrument has been applied to study the gel-liquid crystalline phase transition in a variety of phospholipid bilayer systems. The design and implementation of the volume-perturbation calorimeter are presented along with a discussion of the techniques of data analysis. Finally, we present typical results obtained with this methodology for a multilamellar vesicle dispersion of dipalmitoylphosphatidylcholine.  相似文献   

12.
Two types of hydrocarbon chain interdigitation in sphingomyelin bilayers   总被引:4,自引:0,他引:4  
Vibrational Raman spectroscopic experiments have been performed as a function of temperature on aqueous dispersions of synthetic DL-erythro-N-lignoceroylsphingosylphosphocholine [C(24):SPM], a racemic mixture of two highly asymmetric hydrocarbon chain length sphingomyelins. Raman spectral peak-height intensity ratios of vibrational transitions in the C-H stretching-mode region show that the C(24):SPM-H2O system undergoes two thermal phase transitions centered at 48.5 and 54.5 degrees C. Vibrational data for fully hydrated C(24):SPM are compared to those of highly asymmetric phosphatidylcholine dispersions. The Raman data are consistent with the plausible model that the lower temperature transition can be ascribed to the conversion of a mixed interdigitated gel state (gel II) to a partially interdigitated gel state (gel I) and that the higher temperature transition corresponds to a gel I----liquid-crystalline phase transition. The observation of a mixed interdigitated gel state (gel II) at temperatures below 48.5 degrees C implies that biological membranes may have lipid domains in which some of the lipid hydrocarbon chains penetrate completely across the entire hydrocarbon width of the lipid bilayer.  相似文献   

13.
Cyclosporine A (CSA)-dipalmitoylphosphatidylcholine (DPPC) interactions were investigated using scanning calorimetry, infrared spectroscopy, and Raman spectroscopy. CSA reduced both the temperature and the maximum heat capacity of the lipid bilayer gel-to-liquid crystalline phase transition; the relationship between the shift in transition temperature and CSA concentration indicates that the peptide does not partition ideally between DPPC gel and liquid crystalline phases. This nonideality can be accounted for by excluded volume interactions between peptide molecules. CSA exhibited a similar but much more pronounced effect on the pretransition; at concentrations of 1 mol % CSA the amplitude of the pretransition was less than 20% of its value in the pure lipid. Raman spectroscopy confirmed that the effects of CSA on the phase transitions are not accompanied by major structural alterations in either the lipid headgroup or acyl chain regions at temperatures away from the phase changes. Both infrared and Raman spectroscopic results demonstrated that CSA in the lipid bilayer exists largely in a beta-turn conformation, as expected from single crystal x-ray data; the lipid phase transition does not induce structural alterations in CSA. Although the polypeptide significantly affects DPPC model membrane bilayers, CSA neither inhibited hypotonic hemolysis nor caused erythrocyte hemolysis, in contrast to many chemical agents that are believed to act through membrane-mediated pathways. Thus, agents, such as CSA, that perturb phospholipid phase transitions do not necessarily cause functional changes in cell membranes.  相似文献   

14.
Glucagon forms discoidal particles with dimyristoylphosphatidylcholine at temperatures below the phase transition. Under these conditions and at a lipid to protein molar ratio of 20 : 1, glucagon is observed to induce a closer packing of the phospholipid bilayer. Similar effects are observed upon the interaction of glucagon with dilauroylphosphatidylcholine. In the region of the phase transition the discoidal particles are observed by freeze-fracture electron microscopy to undergo end-to-end association leading to the formation of multilamellar structures containing only a few layers and having a large internal volume. Above the phase transition temperature the properties of the lipid appear to be unperturbed by glucagon according to either freeze-fracture or densitometer studies. These results further support the importance of phospholipid phase transitions in peptide-lipid interactions.  相似文献   

15.
The thermotropic phase behavior of lipid bilayer model membranes composed of the cationic lipid 1,2-di-O-myristoyl-3-N,N,N-trimethylaminopropane (DM-TAP) was examined by differential scanning calorimetry, infrared spectroscopy and X-ray diffraction. Aqueous dispersions of this lipid exhibit a highly energetic endothermic transition at 38.4 degrees C upon heating and two exothermic transitions between 20 and 30 degrees C upon cooling. These transitions are accompanied by enthalpy changes that are considerably greater than normally observed with typical gel/liquid--crystalline phase transitions and have been assigned to interconversions between lamellar crystalline and lamellar liquid--crystalline forms of this lipid. Both infrared spectroscopy and X-ray diffraction indicate that the lamellar crystalline phase is a highly ordered, substantially dehydrated structure in which the hydrocarbon chains are essentially immobilized in a distorted orthorhombic subcell. Upon heating to temperatures near 38.4 degrees C, this structure converts to a liquid-crystalline phase in which there is excessive swelling of the aqueous interlamellar spaces owing to charge repulsion between, and undulations of, the positively charged lipid surfaces. The polar/apolar interfaces of liquid--crystalline DM-TAP bilayers are not as well hydrated as those formed by other classes of phospho- and glycolipids. Such differences are attributed to the relatively small size of the polar headgroup and its limited capacity for interaction with moieties in the bilayer polar/apolar interface.  相似文献   

16.
Quick-freeze differential scanning calorimetry (QF-DSC) and saturation transfer-electron spin resonance (ST-ESR) spectroscopy were used to study lipid gel-phase transitions in mature green tomato fruit microsomal membranes. ST-ESR of 12-doxyl methyl stearate labelled membranes proved to be reproducible and provided increased sensitivity to temperature-induced structural changes, allowing the detection of several transitions in isolated membranes (6 degrees C, 21 degrees C, 28 degrees C). QF-DSC led to the assessment of lipid gel phase transitions in isolated microsomal membranes and microsomal membrane lipids by enhancing the transition. A phase transition enthalpy of 114 J/g and an onset temperature of 29.8 degrees C were obtained for whole membranes while with isolated lipids values of 370 J/g and 19.9 degrees C were found.  相似文献   

17.
Summary Miscibility among phospholipids with different lipid chain-lengths or with different head groups has attracted a number of research efforts because of its significance in biological membrane structure and function. The general consensus about the miscibility of phosphatidylcholines with varying lipid chainlengths appears to be that binary mixtures of phospholipids with a difference of two carbon atoms in the lipid chain mix well at the main phase transition. Miscibility between phosphatidylcholines with differences of four carbon atoms appears to be inconclusive. Previous reports on the phase transition of binary phospholipid mixtures are concerned mainly with multilamellar vesicles and are mostly limited to the main transition. In the present study, unilamellar vesicles were used and miscibility in binary systems between dimyristoyl-, dipalmitoyl- and distearoyl-phosphatidylcholines at pretransition, as well as main transition temperatures was evaluated by constructing phase diagrams. Two methods were used to monitor the phase transitions: differential scanning microcalorimetry and optical absorbance methods. The optical method has the advantage that unilamellar vesicles of dilute phospholipid concentrations can be used. The liquidus and solidus phase boundaries were determined by the onset temperature of heating and cooling scans, respectively, because the completion temperature of a phase transition has no meaning in binary solutions. Dimyristoyl- and distearoyl-phosphatidylcholines. where the difference in the, lipid chain-length is four carbon atoms, mixed well even at pretransition temperature.  相似文献   

18.
J A Centeno  T J O'Leary 《Biochemistry》1990,29(31):7289-7296
We have investigated the effects of methanol, ethanol, and 1-propanol on the phase transitions of L-alpha-dimyristoylphosphatidylethanolamine using differential scanning calorimetry and Fourier transform infrared spectroscopy. Alcohols lower the temperature of the gel (L beta) to liquid-crystalline (L alpha) phase transition and also lower the temperature of the unhydrated crystalline (Lc) to liquid-crystalline phase transition. When the lipid/alcohol dispersions are incubated at 2 degrees C for 1-18 h, a dehydrated crystalline phase forms, which gives rise to a phase transition at about 55 degrees C. This dehydrated crystalline phase forms more quickly at higher alcohol concentrations. Although alcohol at low concentration lowers the enthalpy of the observed melting transition, at high concentrations 1-propanol markedly increases this enthalpy. The phase giving rise to this high-enthalpy melting process is distinct from both the unhydrated crystalline phase and the gel phase. Infrared spectra suggest that this phase contains significant amounts of alcohol in a solid solution with the lipid.  相似文献   

19.
Pressure is found to destabilize the non-bilayer phase with respect to the bilayer in a model lipid system. The lamellar to inverted hexagonal (H11) phase transition of aqueous egg phosphatidylethanolamine is shifted to higher temperatures by hydrostatic pressure. The slope of the increase in transition temperature is constant to beyond 300 bar, and is greater than that seen for other lipid phase transitions. This behavior is consistent with the hypothesis that increasing chain disorder drives the conversion from the bilayer into the hexagonal phase. If this non-bilayer lipid phase is an intermediate in membrane fusion, then pressure should inhibit the process. This may explain the inhibition of chemical transmission at neural synapses by pressure.  相似文献   

20.
Diets supplemented with relatively high levels of either saturated fatty acids derived from sheep kidney fat (sheep kidney fat diet) or unsaturated fatty acids derived from sunflower seed oil (sunflower seed oil diet) were fed to rats for a period of 16 weeks and changes in the thermotropic behaviour of liver and heart mitochondrial lipids were determined by differential scanning calorimetry (DSC). The diets induced similar changes in the fatty acid composition in both liver and heart mitochondrial lipids, the major change being the omega 6 to omega 3 unsaturated fatty acid ratio, which was elevated in mitochondria from animals on the sunflower seed oil diet and lowered with the mitochondria from the sheep kidney fat dietary animals. When examined by DSC, aqueous buffer dispersions of liver and heart mitochondrial lipids exhibited two independent, reversible phase transitions and in some instances a third highly unstable transition. The dietary lipid treatments had their major effect of the temperature at which the lower phase transition occurred, there being an inverse relationship between the transition temperature and the omega 6 to omega 3 unsaturated fatty acid ratio. No significant effect was observed for the temperature of the higher phase transition. These results indicate that certain domains of mitochondrial lipids, probably containing some relatively higher melting-point lipids, independently undergo formation of the solidus or gel phase and this phenomenon is not greatly influenced by the lipid composition of the mitochondrial membranes. Conversely, other domains, representing the bulk of the membrane lipids and which probably contain the relatively lower melting point lipids, undergo solidus phase formation at temperatures which reflect changes in the membrane lipid composition which are in turn, a reflection of the nature of the dietary lipid intake. These lipid phase transitions do not appear to correlate directly with those events considered responsible for the altered Arrhenius kinetics of various mitochondrial membrane-associated enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号