首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cell-free extracts of 3–4 days old mats of nitrate-grown Penicillium citrinum catalyze the hydrolytic cleavage of the N-glycosidic bonds of inosine, guanosine and adenosine optimally at pH 4, 0.1 M citrate buffer. The same extracts catalyze the hydrolytic deamination of cytidine at a maximum rate in 0.08 M Tris-acetate buffer pH 6.5, 40°C and 50°C were the most suitable degrees for purine nucleoside hydrolysis and cytidine deamination, respectively. The incubation of the extracts at 60°C, in the absence of cytidine caused a loss in the deaminating activity, while freezing and thawing had no effect on both activities. The deaminating activity seems to be cytidine specific as neither cytosine, adenine, adenosine nor guanosine could be deaminated. Uridine competively inhibited this activity, while ammonia had no effect. The apparent Km value of this enzyme for cytidine was 1.57×10?3M and its Ki value for uridine was 7.8×10?3M. The apparent Km values of the N-glycosidic bond cleaving enzyme for inosine, guanosine and adenosine were 13.3, 14.2 and 20×10?3 M, respectively.  相似文献   

2.
Pyrimidine Salvage Pathways In Toxoplasma Gondii   总被引:1,自引:0,他引:1  
ABSTRACT. Pyrimidine salvage enzyme activities in cell-free extracts of Toxoplasma gondii were assayed in order to determine which of these enzyme activities are present in these parasites. Enzyme activities that were detected included phosphoribosyltransferase activity towards uracil (but not cytosine or thymine), nucleoside phosphorylase activity towards uridine, deoxyuridine and thymidine (but not cytidine or deoxycytidine), deaminase activity towards cytidine and deoxycytidine (but not cytosine, cytidine 5'-monophosphate or deoxycytidine 5'-monophosphate), and nucleoside 5'-monophosphate phosphohydrolase activity towards all nucleotides tested. No nucleoside kinase or phosphotransferase activity was detected, indicating that T. gondii lack the ability to directly phosphorylate nucleosides. Toxoplasma gondii appear to have a single non-specific uridine phosphorylase enzyme which can catalyze the reversible phosphorolysis of uridine, deoxyuridine and thymidine, and a single cytidine deaminase activity which can deaminate both cytidine and deoxycytidine. These results indicate that pyrimidine salvage in T. gondii probably occurs via the following reactions: cytidine and deoxycytidine are deaminated by cytidine deaminase to uridine and deoxyuridine, respectively; uridine and deoxyuridine are cleaved to uracil by uridine phosphorylase; and uracil is metabolized to uridine 5'-monophosphate by uracil phosphoribosyltransferase. Thus, uridine 5'-monophosphate is the end-product of both de novo pyrimidine biosynthesis and pyrimidine salvage in T. gondii.  相似文献   

3.
Uridine kinase from Ehrlich ascites tumor cells has been purified about 60,000-fold to apparent homogeneity and with an overall recovery of about 40%. This purification was achieved using phosphocellulose and adenosine 5'-triphosphate-agarose affinity chromatography. The subunit molecular mass as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 31,000 daltons. With two-dimensional electrophoresis, only one spot was observed, indicating the absence of isoenzymes. Multiple peaks of activity are routinely observed on ion exchange chromatography or gel filtration, for both crude preparations or homogeneous uridine kinase, in agreement with our earlier results that this enzyme exists as multiple interconvertible oligomeric forms (Payne, R. C., and Traut, T. W. (1982) J. Biol. Chem. 257, 12485-12488). The purified enzyme has a specific activity of 283 mumol/min/mg of protein at 22 degrees C. Initial velocity studies using uridine and ATP are consistent with a sequential mechanism. Km values for uridine, cytidine, and ATP are 40, 57, and 450 microM, respectively. CTP and UTP are competitive inhibitors with respect to ATP, with Ki values for CTP and UTP of 10 and 61 microM, respectively. The enzyme was active with several nucleoside analogs, the Km values being 69 microM (5-fluorouridine), 200 microM (3-deazauridine), and 340 microM (6-azauridine). The pure enzyme is very sensitive to freezing, but can be maintained at O degrees C for 8 weeks with only 20% loss of activity. For long-term storage, enzyme in 50% glycerol can be maintained at -20 degrees C for many months with no detectable loss of activity.  相似文献   

4.
Katahira R  Ashihara H 《Planta》2002,215(5):821-828
In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.  相似文献   

5.
Induction studies on pyrimidine metabolizing enzymes in E. coli B have shown that the enzymes fall into three distinct groups according to their induction pattern. a) Cytidine deaminase and uridine phosphorylase, are induced by cytidine, CMP and adenosine; no induction was observed with uridine and AMP; b) thymidine phosphorylase is induced by cytidine, adenosine, all deoxyribonucleosides, CMP, deoxyribonucleotides, deoxyribose and deoxyribose-1-phosphate; c) uridine-cytidine kinase, uracil phosphoribosyltransferase, 5'-nucleotidase, thymidine kinase, are uninducible enzymes. Simultaneous addition of cytidine and glucose partially overcomes the cytidine deaminase and uridine phosphorylase induction. Cytidine deaminase reaches its maximum activity levels, in E. coli growing cells in presence of cytidine, two hours before the uridine phosphorylase activity. Maximum glucose repression of cytidine deaminase and uridine phosphorylase was obtained in correspondence of maximum cytidine induction.  相似文献   

6.
Thymidylate biosynthesis via the methylation of dUMP is required for DNA replication in Rickettsia prowazekii, an obligate intracytoplasmic bacterium. In theory, dUMP synthesis could occur either by the deamination of deoxycytidine nucleotides or by the reduction of uridine nucleotides. Accordingly, the incorporation of both radiolabeled cytidine and uridine into the thymidylate of R. prowazekii was examined. After DNA hydrolysis and high-performance liquid chromatography, it was determined that 85% of the rickettsial thymidylate was derived from cytidine and the remaining 15% was derived from uridine. These findings were supported by the identification of a dCTP deaminase activity in extracts of R. prowazekii. Extracts of R. prowazekii deaminated 1.7 +/- 0.3 nmol of dCTP/min/mg of protein (a value calculated to suffice for rickettsial growth), and no measurable activity was observed with dCMP as the substrate.  相似文献   

7.
Escherichia coli tRNAPhe was modified by 3 M sodium bisulphite pH 6.0 for 24 h in the temperature range 25 degrees C (x 5 degrees C) to 55 degrees C and in the absence of added magnesium ions. The sites and extents of conversion of cytidines to uridine occurring at each temperature were determined by fingerprinting. The new sites of cytidine modification found at higher reaction temperatures were assumed to arise from breakage of secondary and tertiary structure hydrogen bonds involving cytidine residues. From these data, we conclude that hydrogen bonds within the 'complex core' of the tRNA (including the base pairs G-10 . C-25, C-11 . G-24 and C-13 . G-21 within the dihydrouridine stem and the tertiary structure base pair G-15 . C-48 melt at a lower temperature than the tertiary structure hydrogen bonds between G-19 in the dihydrouridine loop and C-56 in the TpsiC loop.  相似文献   

8.
APOBEC-1, which mediates the editing of apolipoprotein (apo) B mRNA, is the only known member of the C (cytidine)-->U (uridine) editing enzyme subfamily of the cytidine deaminase supergene family. Here we report the cloning of APOBEC-2, another member of the subfamily. Human and mouse APOBEC-2 both contain 224 amino acid residues, and their genes are mapped to syntenic regions of human chromosome 6 (6p21) and mouse chromosome 17. By phylogenetic analysis, APOBEC-2 is shown to be evolutionarily related to APOBEC-1, and analysis of substitution rates indicates that APOBEC-2 is a much better conserved gene than APOBEC-1. APOBEC-2 mRNA and protein are expressed exclusively in heart and skeletal muscle. APOBEC-2 does not display detectable apoB mRNA editing activity. Like other editing enzymes of the cytidine deaminase superfamily, APOBEC-2 has low, but definite, intrinsic cytidine deaminase activity. The identification of APOBEC-2 indicates that APOBEC-1 is not the only member of the C-->U editing enzyme subfamily, which, like the A (adenosine)-->I (inosine) subfamily of editing enzymes, must encompass at least two and possibly more different deaminase enzymes. It suggests that the C-->U editing affecting apoB mRNA and other RNAs is not an isolated event mediated by a single enzyme but involves multiple related proteins that have evolved from a primordial gene closely related to the housekeeping enzyme cytidine deaminase.  相似文献   

9.
Adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) from Bacillus cereus NCIB 8122 has been purified to electrophoretic homogeneity by ammonium sulfate precipitation, gel filtration through Sephadex G-100, DEAE-Sephadex A-50 chromatography and ion-exchange HPLC on DEAE-Polyol. The enzyme activity is stabilized (at temperatures from 0 degrees C to 40 degrees C) by 50 mM NH4+ or K+, while it is irreversibly lost in the absence of these or a few other monovalent cations. Glycerol (24% by volume) helps the cation in stabilizing the enzyme activity above 40 degrees C, but also exerts per se a noticeable protecting effect at room temperature. B. cereus adenosine deaminase displays the following properties: Mr on Sephadex G-200, 68,000; Mr in SDS-polyacrylamide gel electrophoresis, 53,700; optimal pH-stability (in the presence of 50 mM KCl) over the range 8-11 at 4 degrees C, and maximal catalytic activity at 30 degrees C between pH 7 and 10; Km for adenosine around 50 microM over the same pH range and Km for 2'-deoxyadenosine around 400 microM.  相似文献   

10.
D F Wentworth  R Wolfenden 《Biochemistry》1975,14(23):5099-5105
In contrast to the rapid inhibition of bacterial cytidine deaminase by 3,4,5,6-tetrahydrouridine, the onset of inhibition of the enzyme from human liver was found to be relatively slow. Inhibition was found to be reversible, and the corrected rate constants for binding (kon = 2.4 x 10(4) M-1 sec-1) and release (koff = 5.6 x 10(-4) sec-1) were in reasonable agreement with a Ki value (2.9 x 10(-8) M) measured separately under steady-state conditions, which was several orders of magnitude lower than estimates previously reported in the literature. Rates of binding and release of this potential transition state analogue were not appreciably affected by the substitution of deuterium oxide for solvent water. The slow onset of inhibition, which was also observed for cytidine deaminase from HeLa cells, suggests that structural reorganization precedes the formation of a stable enzyme-inhibitor complex. 6-Azacytidine, which favors a "high-anti" configuration at the glycosidic bond, was found to be active as a substrate for cytidine deaminase, with a turnover number exceeding that of cytidine. 2,2'-Anhydro-1-beta-D-arabinofuranosylcytosine, which is restricted to the "syn" configuration, was found to be without activity as a substrate or an inhibitor.  相似文献   

11.
Tritium suicide was shown to be a highly effective method for isolating mutants defective in uridine-cytidine kinase in the Chinese hamster lung cell line V79. The tritium suicide procedure consisted of three kill cycles. Survivors of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of [3H]uridine for 10 min, followed by storage of 3H-labelled cells at −70 °C for 4–7 days. Nine clones that survived the third kill cycle were tested for incorporation of [3H]uridine and for uridine kinase activity in extracts. Eight of these clones were defective in whole-cell uridine incorporation and in uridine kinase activity. A kinetic study was made on the uridine-cytidine kinase activity of three of the mutants. The apparent Vmax of the mutants was reduced approx. 10-fold when either uridine or cytidine was used as substrate. In contrast, the apparent Km of uridine was reduced approx. 12-fold in the mutants with only a 2-fold (probably insignificant) reduction in Km's for cytidine or for ATP.  相似文献   

12.
Cytidine deaminase (cytidine aminohydrolase, 3.5.4.5) is present in Crithidia fasciculata (a mosquito parasite) and in Trypanosoma cruzi (a human pathogen). The enzyme from C. fasciculata deaminated both cytidine and deoxycytidine, the affinity for the former being much lower than the latter. Affinities for both substrates are equal for the T. cruzi enzyme. The production of the enzyme in C. fasciculata was significantly stimulated by the addition of a number of pyrimidine nucleosides (cytidine, uridine, 5-bromouridine, thymidine, orotidine) to the culture media. Only cytidine stimulated enzyme production in T. cruzi. The enzyme from both organisms was unstable in air, even in the frozen state. Stabilization was achieved under anaerobic conditions.  相似文献   

13.
Pyrimidine salvage pathways are vital for all bacteria in that they share in the synthesis of RNA with the biosynthetic pathway in pyrimidine prototrophs, while supplying all pyrimidine requirements in pyrimidine auxotrophs. Salvage enzymes that constitute the pyrimidine salvage pathways were studied in 13 members of Pseudomonas and former pseudomonads. Because it has been established that all Pseudomonas lack the enzyme uridine/cytidine kinase (Udk) and all contain uracil phosphoribosyl transferase (Upp), these two enzymes were not included in this experimental work. The enzymes assayed were: cytosine deaminase [Cod: cytosine + H2O → uracil + NH3], cytidine deaminase [Cdd: cytidine + H2O → uridine + NH3], uridine phosphorylase [Udp: uridine + Pi ↔ uracil + ribose – 1 - P], nucleoside hydrolase [Nuh: purine/pyrimidine nucleoside + H2O → purine/pyrimidine base + ribose], uridine hydrolase [Udh: uridine/cytidine + H2O → uracil/cytosine + ribose]. The assay work generated five different Pyrimidine Salvage Groups (PSG) designated PSG1 – PSG5 based on the presence or absence of the five enzymes. These enzymes were assayed using reverse phase high-performance liquid chromatography techniques routinely carried out in our laboratory. Escherichia coli was included as a standard, which contains all seven of the above enzymes.  相似文献   

14.
A deoxycytidine deaminase that was extremely thermostable in the presence of dithiothreitol was found in a mesophilic bacterium isolated from soil. The bacterium was classified as a Nocardioides sp. The enzyme was purified to a homogeneous protein by treatment at 100 degrees C, ammonium sulfate precipitation, and chromatography on DEAE-Toyopearl, hydroxyapatite, and then Sephacryl S-100. Twenty micrograms of the pure enzyme was obtained from 811 mg of the starting crude protein. After treatment at 50 degrees C for 15 min in the absence of dithiothreitol, enzyme activity was 44% of the starting activity; after treatment at 100 degrees C for 2 h in the presence of 50 mm dithiothreitol, activity was 56% of the starting activity. Dithiothreitol greatly stabilized the enzyme. Activity was maximum at 99 degrees C. The Km values for deoxycytidine, cytidine, and methyl-deoxycytidine were 55.2, 140, and 130 microM, respectively. The molecular mass was estimated to be 52 kDa by gel permeation chromatography. The enzyme molecule was dissociated into two subunits each of 18 kDa subunit when reduced with mercaptoethanol.  相似文献   

15.
L Frick  C Yang  V E Marquez  R Wolfenden 《Biochemistry》1989,28(24):9423-9430
Cytidine deaminase, purified to homogeneity from constitutive mutants of Escherichia coli, was found to bind the competitive inhibitors pyrimidin-2-one ribonucleoside (apparent Ki = 3.6 x 10(-7) M) and 5-fluoropyrimidin-2-one ribonucleoside (apparent Ki = 3.5 x 10(-8) M). Enzyme binding resulted in a change of the lambda max of pyrimidin-2-one ribonucleoside from 303 nm for the free species to 239 nm for the bound species. The value for the bound species was identical with that of an oxygen adduct formed by combination of hydroxide ion with 1,3-dimethyl-2-oxopyrimidinium (239 nm), but lower than that of a sulfur adduct formed by combination of the thiolate anion of N-acetylcysteamine with 1,3-dimethyl-2-oxopyrimidinium (259 nm). The results suggest that pyrimidin-2-one ribonucleoside is bound by cytidine deaminase as an oxygen adduct, probably the covalent hydrate 3,4-dihydrouridine, rather than intact or as an adduct involving a thiol group of the enzyme. In dilute solution at 25 degrees C, the equilibrium constant for formation of a single diastereomer of 3,4-dihydrouridine from pyrimidin-2-one ribonucleoside was estimated as approximately 4.7 x 10(-6), from equilibria of dissociation of water, protonation of 1-methylpyrimidin-2-one, and combination of the 1,3-dimethylpyrimidinium cation with the hydroxide ion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
T P West 《Microbios》1988,56(226):27-36
Pyrimidine metabolism in Pseudomonas fluorescens biotype F, and its ability to grow in liquid culture on pyrimidines and related compounds was investigated. It was found that uracil, uridine, cytosine, cytidine, deoxycytidine, dihydrouracil, dihydrothymine, beta-alanine or beta-aminoisobutyric acid could be utilized by this pseudomonad as a sole nitrogen source. Only uridine, cytidine, beta-alanine, beta-aminoisobutyric acid or ribose were capable of supporting its growth as a sole source of carbon. In solid medium, the pyrimidine analogue 5-fluorouracil or 5-fluorouridine could prevent P. fluorescens biotype F growth at a low concentration while a 20-fold higher concentration of 5-fluorocytosine, 5-fluorodeoxyuridine or 6-azauracil was necessary to block its growth. The pyrimidine salvage enzymes cytosine deaminase, nucleoside hydrolase, uridine phosphorylase, thymidine phosphorylase and cytidine deaminase were assayed. Only cytosine deaminase and nucleoside hydrolase activities could be detected under the assay conditions used. The effect of growth conditions on cytosine deaminase and nucleoside hydrolase levels in the micro-organism was explored. Cytosine deaminase activity was shown to increase if glycerol was substituted for glucose as the sole carbon source or if asparagine replaced (NH4)2SO4 as the sole nitrogen source in each respective medium. In contrast, nucleoside hydrolase activity remained virtually unchanged whether the carbon source in the medium was glucose or glycerol. A decrease in nucleoside hydrolase activity was witnessed when asparagine was present in the medium instead of (NH4)2SO4 as the sole source of nitrogen.  相似文献   

17.
Feedback inhibition of the regulatory enzyme threonine deaminase by isoleucine provides an important level of enzymic control over branched chain amino acid biosynthesis in Escherichia coli. Cloning ilvA, the structural gene for threonine deaminase, under control of the trc promoter results in expression of active enzyme upon induction by isopropyl 1-thio-beta-D-galactoside to levels of approximately 20% of the soluble protein in cell extracts. High level expression of threonine deaminase has facilitated the development of a rapid and efficient protocol for the purification of gram quantities of enzyme with a specific activity 3-fold greater than previous preparations. The catalytic activity of threonine deaminase is absolutely dependent on the presence of pyridoxal phosphate, and the tetrameric molecule is isolated containing 1 mol of cofactor/56,000-Da chain. Wild-type threonine deaminase demonstrates a sigmoidal dependence of initial velocity on threonine concentration in the absence of isoleucine, consistent with a substrate-promoted conversion of the enzyme from a low activity to a high activity conformation. The enzymic dehydration of threonine to alpha-ketobutyrate measured by steady-state kinetics, performed at 20 degrees C in 0.05 M potassium phosphate, pH 7.5, is described by a Hill coefficient, nH, of 2.3 and a K0.5 of 8.0 mM. The negative allosteric effector L-isoleucine strongly inhibits the enzyme, yielding a value for nH of 3.9 and K0.5 of 74 mM whereas enzyme activity is greatly increased by L-valine, which yields nearly hyperbolic kinetics characterized by a value for nH of 1.0 and a K0.5 of 5.7 mM. Thus, these effectors promote dramatic and opposing effects on the transition from the low activity to the high activity conformation of the tetrameric enzyme.  相似文献   

18.
RNAs isolated from Escherichia coli B grown in the presence of 5-fluorouracil have high levels of the analog replacing uridine and uridine-derived modified nucleosides. Cytidine has also been shown to be replaced in these RNAs by 5-fluorocytidine, a metabolic product of 5-fluorouracil, but to a considerably lesser extent. When 5-fluorocytidine is added to cultured of E. coli B little 5-fluorocytidine (0.20 mol%) is incorporated into cellular RNAs because of the active cytosine/cytidine deaminase activities. Addition of the cytidine deaminase inhibitor tetrahydrouridine (70 micrograms/ml) increases 5-fluorocytidine incorporation to about 3 mol% in tRNAs, but does not eliminate 5-fluorouridine incorporation. E. coli mutants lacking cytosine/cytidine deaminase activities are able to more than double the extent of 5-fluorocytidine incorporation into their transfer and ribosomal RNAs, replacing cytidine with no detectable 5-fluorouridine incorporation. Levels of 5-methyluridine, pseudouridine and dihydrouridine in tRNAs are not affected. These fluorocytidine-containing tRNAs show amino acid-accepting activities similar to control tRNAs. Fluorocytidine was found to be quite susceptible to deamination under alkaline conditions. Its conversion to primarily 5-fluorouridine follows pseudo-first-order reaction kinetics with a half-life of 10 h in 0.3 M KOH at 37 degrees C. This instability in alkali probably explains why 5-fluorocytidine was not found earlier in RNAs isolated from cells treated with 5-fluorouridine, since most early RNA hydrolyses were carried out in alkali. It may also explain the mild mutagenic properties observed in some systems following 5-fluorouridine treatment. Initial 19F-NMR measurements in fluorocytidine-containing tRNAs indicate that this modified tRNA may be useful in future structural studies of tRNAs and in probing tRNA-protein complexes.  相似文献   

19.
We developed a test medium for cytidine deaminase in order to examine the distribution of this enzyme in cultured cell lines. The growth of various mammalian cell lines was tested in culture medium containing 2 microM pyrazofurin and 100 microM cytidine. Enzymological assays for the enzyme also were made spectrophotometrically with cell extracts. A good correlation was found between results of cell growth tests and the levels of enzyme activity. Twelve of twenty cell lines were killed in the test medium, but the remaining lines showed good growth. The levels of enzyme activities were lower in the former lines than in the latter. The critical level of enzyme activity required to support cell growth was approximately 30 units per mg protein. These findings indicate that culture medium containing 2 microM pyrazofurin and 100 microM cytidine serves as a test medium for cytidine deaminase. The possibility that the cytidine deaminase may be useful in determining the embryonic origin of cultured cell lines is discussed, based on the growth properties of various cultured cell lines in the test medium.  相似文献   

20.
Cytidine deaminase (cytidine aminohydrolase, 3.5.4.5) is present in Crithidia fasciculata (a mosquito parasite) and in Trypanosoma cruzi (a human pathogen). The enzyme from C. fasciculata deaminated both cytidine and deoxycytidine, the affinity for the former being much lower than the latter. Affinities for both substrates are equal for the T. cruzi enzyme. The production of the enzyme in C. fasciculata was significantly stimulated by the addition of a number of pyrimidine nucleosides (cytidine, uridine, 5-bromouridine, thymidine, orotidine) to the culture media. Only cytidine stimulated enzyme production in T. cruzi. The enzyme from both organisms was unstable in air, even in the frozen state. Stabilization was achieved under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号