首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr) from Clostridium thermoacetium catalyzes transfer of the N5-methyl group of (6S)-methyltetrahydrofolate (CH3-H4folate) to the cob(I)amide center of a corrinoid/iron-sulfur protein (CFeSP), forming H4folate and methylcob(III)amide. We have investigated binding of 13C-enriched (6R,S)-CH3-H4folate and (6R)-CH3-H4folate to MeTr by 13C NMR, equilibrium dialysis, fluorescence quenching, and proton uptake experiments. The results described here and in the accompanying paper [Seravalli, J., Shoemaker, R. K., Sudbeck, M. J., and Ragsdale, S. W. (1999) Biochemistry 38, 5728-5735] constitute the first evidence for protonation of the pterin ring of CH3-H4folate. The pH dependence of the chemical shift in the 13C NMR spectrum for the N5-methyl resonance indicates that MeTr decreases the acidity of the N5 tertiary amine of CH3-H4folate by 1 pK unit in both water and deuterium oxide. Binding of (6R,S)-CH3H4folate is accompanied by the uptake of one proton. These results are consistent with a mechanism of activation of CH3-H4folate by protonation to make the methyl group more electrophilic and the product H4folate a better leaving group toward nucleophilic attack by cob(I)amide. When MeTr is present in excess over (6R,S)-13CH3-H4folate, the 13C NMR signal is split into two broad signals that reflect the bound states of the two diastereomers. This unexpected ability of MeTr to bind both isomers was confirmed by the observation of MeTr-bound (6R)-13CH3-H4folate by NMR and by the measurement of similar dissociation constants for (6R)- and (6S)-CH3-H4folate diastereomers by fluorescence quenching experiments. The transversal relaxation time (T2) of 13CH3-H4folate bound to MeTr is pH independent between pH 5.50 and 7.0, indicating that neither changes in the protonation state of bound CH3-H4folate nor the previously observed pH-dependent MeTr conformational change contribute to broadening of the 13C resonance signal. The dissociation constant for (6R,S)-CH3-H4folate is also pH independent, indicating that the role of the pH-dependent conformational change is to stabilize the transition state for methyl transfer, and not to favor the binding of CH3-H4folate.  相似文献   

2.
Seravalli J  Zhao S  Ragsdale SW 《Biochemistry》1999,38(18):5728-5735
The methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr) from Clostridium thermoaceticum catalyzes transfer of the N5-methyl group from (6S)-methyltetrahydrofolate (CH3-H4folate) to the cobalt center of a corrinoid/iron-sulfur protein (CFeSP), forming methylcob(III)amide and H4folate. This reaction initiates the unusual biological organometallic reaction sequence that constitutes the Wood-Ljungdahl or reductive acetyl-CoA pathway. The present paper describes the use of steady-state, product inhibition, single-turnover, and kinetic simulation experiments to elucidate the mechanism of the MeTr-catalyzed reaction. These experiments complement those presented in the companion paper in which binding and protonation of CH3-H4folate are studied by spectroscopic methods [Seravalli, J., Shoemaker, R. K., Sudbeck, M. J., and Ragsdale, S. W. (1999) Biochemistry 38, 5736-5745]. Our results indicate that a pH-dependent conformational change is required for methyl transfer in the forward and reverse directions; however, this step is not rate-limiting. CH3-H4folate and the CFeSP [in the cob(I)amide state] bind randomly and independently to form a ternary complex. Kinetic simulation studies indicate that CH3-H4folate binds to MeTr in the unprotonated form and then undergoes rapid protonation. This protonation enhances the electrophilicity of the methyl group, in agreement with a 10-fold increase in the pKa at N5 of CH3-H4folate. Next, the Co(I)-CFeSP attacks the methyl group in a rate-limiting SN2 reaction to form methylcob(III)amide. Finally, the products randomly dissociate. The following steady-state constants were obtained: kcat = 14.7 +/- 1.7 s-1, Km of the CFeSP = 12 +/- 4 microM, and Km of (6S)-CH3-H4folate = 2.0 +/- 0.3 microM. We assigned the rate constants for the elementary reaction steps by performing steady-state and pre-steady-state kinetic studies at different pH values and by kinetic simulations.  相似文献   

3.
BACKGROUND: Methyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr), catalyzes a key step in the Wood-Ljungdahl pathway of carbon dioxide fixation. It transfers the N5-methyl group from methyltetrahydrofolate (CH3-H4folate) to a cob(I)amide center in another protein, the corrinoid iron-sulfur protein. MeTr is a member of a family of proteins that includes methionine synthase and methanogenic enzymes that activate the methyl group of methyltetra-hydromethano(or -sarcino)pterin. We report the first structure of a protein in this family. RESULTS: We determined the crystal structure of MeTr from Clostridium thermoaceticum at 2.2 A resolution using multiwavelength anomalous diffraction methods. The overall architecture presents a new functional class of the versatile triose phosphate isomerase (TIM) barrel fold. The MeTr tertiary structure is surprisingly similar to the crystal structures of dihydropteroate synthetases despite sharing less than 20% sequence identity. This homology permitted the methyl-H4folate binding site to be modeled. The model suggests extensive conservation of the pterin ring binding residues in the polar active sites of the methyltransferases and dihydropteroate synthetases. The most significant structural difference between these enzymes is in a loop structure above the active site. It is quite open in MeTr, where it can be modeled as the cobalamin binding site. CONCLUSIONS: The MeTr structure consists of a TIM barrel that embeds methyl-H4folate and cobamide. All related methyltransferases are predicted to fold into a similar TIM barrel pattern and have a similar pterin and cobamide binding site. The observed structure is consistent with either a 'front' (N5) or 'back' (C8a) side protonation of CH3-H4folate, a key step that enhances the electrophilic character of the methyl group, activating it for nucleophilic attack by Co(I).  相似文献   

4.
Smith AE  Matthews RG 《Biochemistry》2000,39(45):13880-13890
N5-Methyltetrahydrofolate (CH(3)-H(4)folate) donates a methyl group to the cob(I)alamin cofactor in the reaction catalyzed by cobalamin-dependent methionine synthase (MetH, EC 2.1.1.3). Nucleophilic displacement of a methyl group attached to a tertiary amine is a reaction without an obvious precedent in bioorganic chemistry. Activation of CH(3)-H(4)folate by protonation prior to transfer of the methyl group has been the favored mechanism. Protonation at N5 would lead to formation of an aminium cation, and quaternary amines such as 5,5-dimethyltetrahydropterin have been shown to transfer methyl groups to cob(I)alamin. Because CH(3)-H(4)folate is an enamine, protonation could occur either at N5 to form an aminium cation or on a conjugated carbon with formation of an iminium cation. We used (13)C distortionless enhancement by polarization transfer (DEPT) NMR spectroscopy to infer that CH(3)-H(4)folate in aqueous solution protonates at N5, not on carbon. CH(3)-H(4)folate must eventually protonate at N5 to form the product H(4)folate; however, this protonation could occur either upon formation of the binary enzyme-CH(3)-H(4)folate complex or later in the reaction mechanism. Protonation at N5 is accompanied by substantial changes in the visible absorbance spectrum of CH(3)-H(4)folate. We have measured the spectral changes associated with binding of CH(3)-H(4)folate to a catalytically competent fragment of MetH over the pH range from 5.5 to 8.5. These studies indicate that CH(3)-H(4)folate is bound in the unprotonated form throughout this pH range and that protonated CH(3)-H(4)folate does not bind to the enzyme. Our observations are rationalized by sequence homologies between the folate-binding region of MetH and dihydropteroate synthase, which suggest that the pterin ring is bound in the hydrophobic core of an alpha(8)beta(8) barrel in both enzymes. The results from these studies are difficult to reconcile with an S(N)2 mechanism for methyl transfer and suggest that the presence of the cobalamin cofactor is important for CH(3)-H(4)folate activation. We propose that protonation of N5 occurs after carbon-nitrogen bond cleavage, and we invoke a mechanism involving oxidative addition of Co(1+) to the N5-methyl bond to rationalize our results.  相似文献   

5.
Several anaerobic acetogenic, methanogenic, hydrogenogenic, and sulfate-reducing microorganisms are able to use the reductive acetyl-CoA (Wood-Ljungdahl) pathway to convert CO2 into biomass. The reductive acetyl-CoA pathway consists of two branches connected by the Co/Fe-containing corrinoid iron-sulfur protein (CoFeSP), which transfers a methyl group from a methyltransferase (MeTr)/methyltetrahydrofolate (CH3-H4 folate) complex to the reduced Ni-Ni-[4Fe-4S] cluster (cluster A) of acetyl-CoA synthase. We investigated the CoFeSP and MeTr couple of the hydrogenogenic bacterium Carboxydothermus hydrogenoformans and show that the two proteins are able to catalyze the methyl-group transfer reaction from CH3-H4 folate to the Co(I) center of CoFeSP. We determined the crystal structures of both proteins. The structure of CoFeSP includes the previously unresolved N-terminal domain of the large subunit of CoFeSP, revealing a unique four-helix-bundle-like architecture in which a [4Fe-4S] cluster is shielded by hydrophobic amino acids. It further reveals that the corrinoid and the [4Fe-4S] cluster binding domains are mobile, which is mandatory for the postulated electron transfer between them. Furthermore, we solved the crystal structures of apo-MeTr, CH3-H4-folate-bound MeTr, and H4-folate-bound MeTr, revealing a substrate-induced closure of the CH3-H4 folate binding cavity of MeTr. We observed three different conformations of Asn200 depending on the substrate bound in the active site, demonstrating its conformational modulation by hydrogen-bonding interactions with the substrate. The observed flexibility could be essential to stabilize the transition state during methyl-group transfer. The conformational space and role of Asn200 are likely conserved in homologous cobalamin-dependent MeTrs such as methionine synthase.  相似文献   

6.
Many anaerobic bacteria fix CO2 via the acetyl-coenzyme A (CoA) (Wood) pathway. Carbon monoxide dehydrogenase (CODH), a corrinoid/iron-sulfur protein (C/Fe-SP), methyltransferase (MeTr), and an electron transfer protein such as ferredoxin II play pivotal roles in the conversion of methyltetrahydrofolate (CH3-H4folate), CO, and CoA to acetyl-CoA. In the study reported here, our goals were (i) to optimize the method for determining the activity of the synthesis of acetyl-CoA, (ii) to evaluate how closely the rate of synthesis of acetyl-CoA by purified enzymes approaches the rate at which whole cells synthesize acetate, and (iii) to determine which steps limit the rate of acetyl-CoA synthesis. In this study, CODH, MeTr, C/Fe-SP, and ferredoxin were purified from Clostridium thermoaceticum to apparent homogeneity. We optimized conditions for studying the synthesis of acetyl-CoA and found that when the reaction is dependent upon MeTr, the rate is 5.3 mumol min-1 mg-1 of MeTr. This rate is approximately 10-fold higher than that reported previously and is as fast as that predicted on the basis of the rate of in vivo acetate synthesis. When the reaction is dependent upon CODH, the rate of acetyl-CoA synthesis is approximately 0.82 mumol min-1 mg-1, approximately 10-fold higher than that observed previously; however, it is still lower than the rate of in vivo acetate synthesis. It appears that at least two steps in the overall synthesis of acetyl-CoA from CH3-H4folate, CO, and CoA can be partially rate limiting. At optimal conditions of low pH (approximately 5.8) and low ionic strength, the rate-limiting step involves methylation of CODH by the methylated C/Fe-SP. At higher pH values and/or higher ionic strength, transfer of the methyl group of CH3-H4folate to the C/Fe-SP becomes rate limiting.  相似文献   

7.
Dorweiler JS  Finke RG  Matthews RG 《Biochemistry》2003,42(49):14653-14662
Cobalamin-dependent methionine synthase (MetH) catalyzes the transfer of methyl groups between methyltetrahydrofolate (CH(3)-H(4)folate) and homocysteine, with the enzyme-bound cobalamin serving as an intermediary in the methyl transfers. An MetH fragment comprising residues 2-649 contains modules that bind and activate CH(3)-H(4)folate and homocysteine and catalyze methyl transfers to and from exogenous cobalamin. Comparison of the rates of reaction of cobalamin, which contains a dimethylbenzimidazole nucleotide coordinated to the cobalt in the lower axial position, and cobinamide, which lacks the dimethylbenzimidazole nucleotide, allows assessment of the degree of stabilization the dimethylbenzimidazole base provides for methyl transfer between CH(3)-H(4)folate bound to MetH(2-649) and exogenous cob(I)alamin. When the reactions of cob(I)alamin or cob(I)inamide with CH(3)-H(4)folate are compared, the observed second-order rate constants are 2.7-fold faster for cob(I)alamin; in the reverse direction, methylcobinamide reacts 35-fold faster than methylcobalamin with enzyme-bound tetrahydrofolate. These measurements can be used to estimate the influence of the dimethylbenzimidazole ligand on both the thermodynamics and kinetics of methyl transfer between methyltetrahydrofolate and cob(I)alamin or cob(I)inamide. The free energy change for methyl transfer from CH(3)-H(4)folate to cob(I)alamin is 2.8 kcal more favorable than that for methyl transfer to cob(I)inamide. Dimethylbenzimidazole contributes approximately 0.6 kcal/mol of stabilization for the forward reaction and approximately 2.2 kcal/mol of destabilization for the reverse reaction. Binding of methylcobalamin to full-length methionine synthase is accompanied by ligand substitution, and switching between "base-on" and "base-off" states of the cofactor has been demonstrated [Bandarian, V., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 8156-8163]. The present results disfavor a major role for such switching in catalysis of methyl transfer, and are consistent with the hypothesis that the primary role of the ligand triad in methionine synthase is controlling the distribution of enzyme conformations during catalysis.  相似文献   

8.
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of the N5-methyl group of methyltetrahydrofolate (CH(3)-H(4)folate) to the sulfur of homocysteine (Hcy) to form methionine and tetrahydrofolate (H(4)folate) as products. This reaction is thought to involve a direct methyl transfer from one substrate to the other, requiring the two substrates to interact in a ternary complex. The crystal structure of a MetE.CH(3)-H(4)folate binary complex shows that the methyl group is pointing away from the Hcy binding site and is quite distant from the position where the sulfur of Hcy would be, raising the possibility that this binary complex is nonproductive. The CH(3)-H(4)folate must either rearrange or dissociate before methyl transfer can occur. Therefore, determining the order of substrate binding is of interest. We have used kinetic and equilibrium measurements in addition to isotope trapping experiments to elucidate the kinetic pathway of substrate binding in MetE. These studies demonstrate that both substrate binary complexes are chemically and kinetically competent for methyl transfer and suggest that the conformation observed in the crystal structure is indeed on-pathway. Additionally, the substrates are shown to bind synergistically, with each substrate binding 30-fold more tightly in the presence of the other. Methyl transfer has been determined to be slow compared to ternary complex formation and dissociation. Simulations indicate that nearly all of the enzyme is present as the ternary complex under physiological conditions.  相似文献   

9.
The flavoprotein Escherichia coli methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate). The X-ray crystal structure of the enzyme has revealed the amino acids at the flavin active site that are likely to be relevant to catalysis. Here, we have focused on two conserved residues, Asp 120 and Glu 28. The presence of an acidic residue (Asp 120) near the N1-C2=O position of the flavin distinguishes MTHFR from all other known flavin oxidoreductases and suggests an important function for this residue in modulating the flavin reactivity. Modeling of the CH(3)-H(4)folate product into the enzyme active site also suggests roles for Asp 120 in binding of folate and in electrostatic stabilization of the putative 5-iminium cation intermediate during catalysis. In the NADH-menadione oxidoreductase assay and in the isolated reductive half-reaction, the Asp120Asn mutant enzyme is reduced by NADH 30% more rapidly than the wild-type enzyme, which is consistent with a measured increase in the flavin midpoint potential. Compared to the wild-type enzyme, the mutant showed 150-fold decreased activity in the physiological NADH-CH(2)-H(4)folate oxidoreductase reaction and in the oxidative half-reaction involving CH(2)-H(4)folate, but the apparent K(d) for CH(2)-H(4)folate was relatively unchanged. Our results support a role for Asp 120 in catalysis of folate reduction and perhaps in stabilization of the 5-iminium cation. By analogy to thymidylate synthase, which also uses CH(2)-H(4)folate as a substrate, Glu 28 may serve directly or via water as a general acid catalyst to aid in 5-iminium cation formation. Consistent with this role, the Glu28Gln mutant was unable to catalyze the reduction of CH(2)-H(4)folate and was inactive in the physiological oxidoreductase reaction. The mutant enzyme was able to bind CH(3)-H(4)folate, but reduction of the FAD cofactor was not observed. In the NADH-menadione oxidoreductase assay, the mutant demonstrated a 240-fold decrease in activity.  相似文献   

10.
Cobalamin-independent methionine synthase (MetE) catalyzes the synthesis of methionine by a direct transfer of the methyl group of N5-methyltetrahydrofolate (CH3-H2PteGlun) to the sulfur atom of homocysteine (Hcy). We report here the first crystal structure of this metalloenzyme under different forms, free or complexed with the Hcy and folate substrates. The Arabidopsis thaliana MetE (AtMetE) crystals reveal a monomeric structure built by two (betaalpha)8 barrels making a deep groove at their interface. The active site is located at the surface of the C-terminal domain, facing the large interdomain cleft. Inside the active site, His647, Cys649, and Cys733 are involved in zinc coordination, whereas Asp605, Ile437, and Ser439 interact with Hcy. Opposite the zinc/Hcy binding site, a cationic loop (residues 507-529) belonging to the C-terminal domain anchors the first glutamyl residue of CH3-H4PteGlu5. The pterin moiety of CH3-H4PteGlu5 is stacked with Trp567, enabling the N5-methyl group to protrude in the direction of the zinc atom. These data suggest a structural role of the N-terminal domain of AtMetE in the stabilization of loop 507-529 and in the interaction with the poly-glutamate chain of CH3-H4PteGlun. Comparison of AtMetE structures reveals that the addition of Hcy does not lead to a direct coordination of the sulfur atom with zinc but to a reorganization of the zinc binding site with a stronger coordination to Cys649, Cys733, and a water molecule.  相似文献   

11.
Taurog RE  Matthews RG 《Biochemistry》2006,45(16):5092-5102
Cobalamin-independent methionine synthase (MetE) catalyzes the final step of de novo methionine synthesis using the triglutamate derivative of methyltetrahydrofolate (CH(3)-H(4)PteGlu(3)) as methyl donor and homocysteine (Hcy) as methyl acceptor. This reaction is challenging because at physiological pH the Hcy thiol is not a strong nucleophile and CH(3)-H(4)PteGlu(3) provides a very poor leaving group. Our laboratory has previously established that Hcy is ligated to a tightly bound zinc ion in the MetE active site. This interaction activates Hcy by lowering its pK(a), such that the thiolate is stabilized at neutral pH. The remaining chemical challenge is the activation of CH(3)-H(4)PteGlu(3). Protonation of N5 of CH(3)-H(4)PteGlu(3) would produce a better leaving group, but occurs with a pK(a) of 5 in solution. We have taken advantage of the sensitivity of the CH(3)-H(4)PteGlu(3) absorption spectrum to probe its protonation state when bound to MetE. Comparison of free and MetE-bound CH(3)-H(4)PteGlu(3) absorbance spectra indicated that the N5 is not protonated in the binary complex. Rapid reaction studies have revealed changes in CH(3)-H(4)PteGlu(3) absorbance that are consistent with protonation at N5. These absorbance changes show saturable dependence on both Hcy and CH(3)-H(4)PteGlu(3), indicating that protonation of CH(3)-H(4)PteGlu(3) occurs upon formation of the ternary complex and prior to methyl transfer. Furthermore, the tetrahydrofolate (H(4)PteGlu(3)) product appears to remain bound to MetE, and in the presence of excess Hcy a MetE.H(4)PteGlu(3).Hcy mixed ternary complex forms, in which H(4)PteGlu(3) is protonated.  相似文献   

12.
Escherichia coli methylenetetrahydrofolate reductase (MTHFR) catalyzes the NADH-linked reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as cofactor. MTHFR is unusual among flavin oxidoreductases because it contains a conserved, negatively rather than positively charged amino acid (aspartate 120) near the N1-C2=O position of the flavin. At this location, Asp 120 is expected to influence the redox properties of the enzyme-bound FAD. Modeling of the CH(3)-H(4)folate product into the enzyme active site suggests that Asp 120 may also play crucial roles in folate binding and catalysis. We have replaced Asp 120 with Asn, Ser, Ala, Val, and Lys and have characterized the mutant enzymes. Consistent with a loss of negative charge near the flavin, the midpoint potentials of the mutants increased from 17 to 30 mV. A small kinetic effect on the NADH reductive half-reaction was also observed as the mutants exhibited a 1.2-1.5-fold faster reduction rate than the wild-type enzyme. Catalytic efficiency (k(cat)/K(m)) in the CH(2)-H(4)folate oxidative half-reaction was decreased significantly (up to 70000-fold) and in a manner generally consistent with the negative charge density of position 120, supporting a major role for Asp 120 in electrostatic stabilization of the putative 5-iminium cation intermediate during catalysis. Asp 120 is also intimately involved in folate binding as increases in the apparent K(d) of up to 15-fold were obtained for the mutants. Examining the E(red) + CH(2)-H(4)folate reaction at 4 degrees C, we obtained, for the first time, evidence for the rapid formation of a reduced enzyme-folate complex with wild-type MTHFR. The more active Asp120Ala mutant, but not the severely impaired Asp120Lys mutant, demonstrated the species, suggesting a connection between the extent of complex formation and catalytic efficiency.  相似文献   

13.
Pejchal R  Sargeant R  Ludwig ML 《Biochemistry》2005,44(34):11447-11457
Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a (betaalpha)(8) barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH(3)-H(4)folate have now been determined at resolutions of 1.95 and 1.85 A, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformation and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH(3)-H(4)folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops beta2-alpha2 (L2), beta3-alpha3 (L3), and beta4-alpha4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a "closed" conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an "open" conformation to allow NADH to bind.  相似文献   

14.
Trimmer EE  Ballou DP  Matthews RG 《Biochemistry》2001,40(21):6205-6215
The flavoprotein methylenetetrahydrofolate reductase (MTHFR) from Escherichia coli catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using NADH as the source of reducing equivalents. The enzyme also catalyzes the transfer of reducing equivalents from NADH or CH(3)-H(4)folate to menadione, an artificial electron acceptor. Here, we have determined the midpoint potential of the enzyme-bound flavin to be -237 mV. We have examined the individual reductive and oxidative half-reactions constituting the enzyme's activities. In an anaerobic stopped-flow spectrophotometer, we have measured the rate constants of flavin reduction and oxidation occurring in each half-reaction and have compared these with the observed catalytic turnover numbers measured under steady-state conditions. We have shown that, in all cases, the half-reactions proceed at rates sufficiently fast to account for overall turnover, establishing that the enzyme is kinetically competent to catalyze these oxidoreductions by a ping-pong Bi-Bi mechanism. Reoxidation of the reduced flavin by CH(2)-H(4)folate is substantially rate limiting in the physiological NADH-CH(2)-H(4)folate oxidoreductase reaction. In the NADH-menadione oxidoreductase reaction, the reduction of the flavin by NADH is rate limiting as is the reduction of flavin by CH(3)-H(4)folate in the CH(3)-H(4)folate-menadione oxidoreductase reaction. We conclude that studies of individual half-reactions catalyzed by E. coli MTHFR may be used to probe mechanistic questions relevant to the overall oxidoreductase reactions.  相似文献   

15.
The role of conserved Asp-199 in chloramphenicol acetyltransferase (CAT) has been investigated by site-directed mutagenesis. Substitution of Asp-199 by alanine results in a thermolabile mutant enzyme (Ala-199 CAT) with reduced kcat(13-fold) but similar Km values to wild type CAT. Replacement by asparagine gives rise to a thermostable mutant enzyme (Asn-199 CAT) with much reduced kcat(1500-fold). Furthermore, Asn-199 CAT shows anomalous inactivation kinetics with the affinity reagent 3-(bromo-acetyl)chloramphenicol. These results favor a structural role for Asp-199 rather than a catalytic one, in keeping with crystallographic evidence for involvement of Asp-199 in a tight salt bridge with Arg-18. Replacement of Arg-18 by valine results in a mutant enzyme (Val-18 CAT) with similar properties to Ala-199 CAT. The catalytic imidazole of His-19 appears to be conformationally constrained by hydrogen bonding between N1-H and the carbonyl oxygen of the same residue and by ring stacking with Tyr-25.  相似文献   

16.
Most mammalian cells receive exogenous folate from the bloodstream in the form of 5-methyltetrahydropteroylmonoglutamate (CH3-H4PteGlu1). Because this folate derivative is a very poor substrate for folylpolyglutamate synthetase, the enzyme that adds glutamyl residues to intracellular folates, CH3-H4PteGlu1 must first be converted to tetrahydropteroylmonoglutamate (H4PteGlu1), 10-formyltetrahydropteroylmonoglutamate (CHO-H4PteGlu1), or dihydrofolate (H2folate), which are excellent substrates for folylpolyglutamate synthetase. Polyglutamylation is required both for retention of intracellular folates and for efficacy of folates as substrates for most folate-dependent enzymes. Two enzymes are known that will react with CH3-H4PteGlu1 in vitro, methylenetetrahydrofolate reductase and methyltetrahydrofolate-homocysteine methyltransferase (cobalamin-dependent methionine synthase). These studies were performed to assess the possibility that methylenetetrahydrofolate reductase might catalyze the conversion of CH3-H4PteGlu1 to CH2-H4PteGlu1. CH2-H4PteGlu1 is readily converted to CHO-H4PteGlu1 by the action of methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase, and these enzyme activities show very little preference for folypolyglutamate substrates as compared with folylmonoglutamates. We conclude from in vitro studies of the enzyme that methylenetetrahydrofolate reductase cannot convert CH3-H4PteGlu1 to CH2-H4PteGlu1 under physiological conditions and that uptake and retention of folate will be dependent on methionine synthase activity.  相似文献   

17.
In order to test the ability of phosphate groups to quench the fluorescence of tryptophan in protein-nucleic acid complexes we have studied the effect of various phosphate ions on the fluorescence of tryptophan derivatives. Unsubstituted and monoalkyl monoanions (H2PO4- and CH3OPO3H-) quench the fluorescence of all investigated indole derivatives while the dimethyl anion (CH3O)2 PO2- does not. This suggests that quenching of tryptophan fluorescence by phosphate monoanions requires the presence of an acidic OH group and could be due to a proton transfer from the phosphate ion to the indole chromophore. Trianions (PO4 3-4) which are strong proton acceptors quench the fluorescence of all tryptophan derivatives except N(1)methyl tryptophan. This result strongly supports our proposal that quenching of tryptophan fluorescence by phosphate trianions occurs through deprotonation of the NH indole group. Bianions (HPO '4(7), and CH3O PO3 2-3) quench the fluorescence of several indole derivatives including N-acetyl tryptophanamide but have no effect on tryptophan or N(1)-methyl tryptophan. From our results we conclude that phosphate groups of nucleic acids are not able to quench the fluorescence of tryptophyl residues in protein-nucleic acid complexes except if an accessible residue is located near a phosphorylated polynucleotide chain end.  相似文献   

18.
Folate metabolism in the rat was investigated using radiolabelled 5-methyltetrahydropteroylglutamate (5-CH3-H4PteGlu) and its oxidation products. 5-CH3-H4PteGlu is absorbed completely from the intestine, although in some preparations it is an equimolecular mixture of C-6 epimers, only one of which is naturally present in biological systems. The methyl group is incorporated into non-folate compounds, including methionine and creatine. No evidence was observed for the oxidation of the methyl group of 5-CH3-H4PteGlu to form other folate types. The tetrahydrofolate moiety of 5-CH3-H4PteGlu is metabolized in a similar manner to folic acid, forming formyl folates and tissue polyglutamates, and is catabolized by scission. The triazine oxidation product of 5-CH3-H4PteGlu is not metabolized by the rat or its gut microflora. 5-Methyl-5,6-dihydropteroylglutamate, however, is assimilated into the folate pool, but is substantially broken down by passage through the gut. The possible implication of this in scorbutic diets is discussed.  相似文献   

19.
L Liu  D V Santi 《Biochemistry》1992,31(22):5100-5104
The conserved Asn 229 of thymidylate synthase (TS) forms a cyclic hydrogen bond network with the 3-NH and 4-O of the nucleotide substrate dUMP. The Asn 229 to Asp mutant of Lactobacillus casei thymidylate synthase (TS N229D) has been prepared, purified, and investigated. Steady-state kinetic parameters of TS N229D show 3.5- and 10-fold increases in the Km values of CH2H4folate and dUMP, respectively, and a 1000-fold decrease in kcat. Most important, the Asp 229 mutation changes the substrate specificity of TS to an enzyme which recognizes and methylates dCMP in preference to dUMP. With TS N229D the Km for dCMP is bout 3-fold higher than for dUMP, and the Km for CH2H4folate is increased about 5-fold; however, the kcat for dCMP methylation is 120-fold higher than that for dUMP methylation. Specificity for dCMP versus dUMP, as measured by kcat/Km, changes from negligible with wild-type TS to about a 40-fold increase with TS N229D. TS N229D reacts with CH2H4folate and FdUMP or FdCMP to form ternary complexes which are analogous to the TS-FdUMP-CH2H4folate complex. From what is known of the mechanism and structure of TS, the dramatic change in substrate specificity of TS N229D is proposed to involve a hydrogen bond network between Asp 229 and the 3-N and 4-NH2 of the cytosine heterocycle, causing protonation of the 3-N and stabilization of a reactive imino tautomer. A similar mechanism is proposed for related enzymes which catalyze one-carbon transfers to cytosine heterocycles.  相似文献   

20.
T-protein is a component of the glycine cleavage system and catalyzes the tetrahydrofolate-dependent reaction. To determine the folate-binding site on the enzyme, 14C-labeled methylenetetrahydropteroyltetraglutamate (5,10-CH2-H4PteGlu4) was enzymatically synthesized from methylenetetrahydrofolate (5, 10-CH2-H4folate) and [U-14C]glutamic acid and subjected to cross-linking with the recombinant Escherichia coli T-protein using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, a zero-length cross-linker between amino and carboxyl groups. The cross-linked product was digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase high performance liquid chromatography. Amino acid sequencing of the labeled peptides revealed that three lysine residues at positions 78, 81, and 352 were involved in the cross-linking with polyglutamate moiety of 5, 10-CH2-H4PteGlu4. The comparable experiment with 5,10-CH2-H4folate revealed that Lys-81 and Lys-352 were also involved in cross-linking with the monoglutamate form. Mutants with single or multiple replacement(s) of these lysine residues to glutamic acid were constructed by site-directed mutagenesis and subjected to kinetic analysis. The single mutation of Lys-352 caused similar increase (2-fold) in Km values for both folate substrates, but that of Lys-81 affected greatly the Km value for 5,10-CH2-H4PteGlu4 rather than for 5,10-CH2-H4folate. It is postulated that Lys-352 may serve as the primary binding site to alpha-carboxyl group of the first glutamate residue nearest the p-aminobenzoic acid ring of 5,10-CH2-H4folate and 5,10-CH2-H4PteGlu4, whereas Lys-81 may play a key role to hold the second glutamate residue through binding to alpha-carboxyl group of the second glutamate residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号