首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative stress and covalent binding have been proposed as possible mechanisms involved in the cytotoxic effects of the parkinsonism-causing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the toxicity induced by MPTP in isolated rat hepatocytes seems to be relatively independent of oxygen radical-induced oxidative stress. Here we demonstrate that MPTP cytotoxicity is not potentiated by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase, nor prevented by the antioxidant N,N'-diphenyl-p-phenylenediamine (DPPD) or the iron-chelating agent desferrioxamine. Moreover, preincubation of hepatocytes with diethylmaleate to lower the level of intracellular reduced glutathione (to 20% of the initial value) did not affect either the rate or extent of MPTP cytotoxicity. Thus, nucleophilic soluble thiols do not seem to play a protective role against MPTP-induced cell damage, in contrast to what one would have expected if covalent protein binding and oxidative stress were involved as toxic mechanisms. On the other hand, MPTP cytotoxicity was potentiated by pretreatment of hepatocytes with cytochrome P-450 inhibitors (e.g., SKF 525A and metyrapone) and a more rapid depletion of ATP was observed in these experimental conditions. We conclude that mitochondrial damage and subsequent ATP depletion are likely to play a critical role in the toxicity of MPTP to isolated hepatocytes and that the metabolism of MPTP via the cytochrome P-450 monooxygenase system can be considered to be a detoxifying pathway.  相似文献   

2.
The metabolism and toxic effects of eugenol (4-allyl-2-methoxyphenol) were studies in isolated rat hepatocytes. Incubation of hepatocytes with eugenol resulted in the formation of conjugates with sulfate, glucuronic acid and glutathione. The major metabolite formed was the glucuronic acid conjugate. Covalent binding to cellular protein was observed using [3H]eugenol. Loss of intracellular glutathione and cell death were also observed in these incubations. Concentrations of 1 mM eugenol caused a loss of over 90% of intracellular glutathione and resulted in approximately 85% cell death over a 5-h incubation period. The loss of the majority of glutathione occurred prior to the onset of cell death (2 h). The effects of eugenol were concentration dependent. The addition of 1 mM N-acetylcysteine to incubations containing 1 mM eugenol was able to completely prevent glutathione loss and cell death as well as inhibit the covalent binding of eugenol metabolites to protein. Conversely, pretreatment of hepatocytes with diethylmaleate to deplete intracellular glutathione increased the cytotoxic effects of eugenol. These results demonstrate that eugenol is actively metabolized in hepatocytes and suggest that the cytotoxic effects of eugenol are due to the formation of a reactive intermediate, possibly a quinone methide.  相似文献   

3.
Sulfite (SO(3)(2-)) has been widely used as preservative and antimicrobial in preventing browning of foods and beverages. SO(2), a common air pollutant, also is capable of producing sulfite and bisulfite depending on the pH of solutions. A molybdenum-dependent mitochondrial enzyme, sulfite oxidase, oxidizes sulfite to inorganic sulfate and prevents its toxic effects. In the present study, sulfite toxicity towards isolated rat hepatocytes was markedly increased by partial inhibition of cytochrome a/a(3) by cyanide or by putting rats on a high-tungsten/low-molybdenum diet, which result in inactivation of sulfite oxidase. Sulfite cytotoxicity was accompanied by a rapid disappearance of GSSG followed by a slow depletion of reduced glutathione (GSH). Depleting hepatocyte GSH beforehand increased cytotoxicity of sulfite. On the other hand, dithiothreitol (DTT), a thiol reductant, added even 1h after the addition of sulfite to hepatocytes, prevented cell death and restored hepatocyte GSH levels. Sulfite cytotoxicity was also accompanied by an increase of oxygen uptake, reactive oxygen species (ROS) formation and lipid peroxidation. Cytochrome P450 inhibitors, metyrapone and piperonyl butoxide also prevented sulfite-induced cytotoxicity and lipid peroxidation. Desferroxamine and antioxidants also protected the cells against sulfite toxicity. These findings suggest that cytotoxicity of sulfite is mediated by free radicals as ROS formation increases by sulfite and antioxidants prevent its toxicity. Reaction of sulfite or its free radical metabolite with disulfide bonds of GSSG and GSH results in the compromise of GSH/GSSG antioxidant system leaving the cell susceptible to oxidative stress. Restoring GSH content of the cell or protein-SH groups by DTT can prevent sulfite cytotoxicity.  相似文献   

4.
Nitrofurantoin is a widely utilized urinary antimicrobial drug which has been associated with pulmonary fibrosis, neuropathy, and hepatitis as well as hemolytic anemia in glucose-6-phosphate dehydrogenase-deficient individuals. Incubation of freshly isolated rat hepatocytes with nitrofurantoin caused oxygen activation as a result of futile redox cycling. Glutathione disulfide (GSSG) was formed and rapidly exported from the cell resulting in complete glutathione (GSH) depletion followed by cell death. However, fructose prevented the export of GSSG from the cell and GSH levels recovered rapidly without cytotoxicity occurring. Fructose did not affect nitrofurantoin metabolism but rapidly depleted cellular ATP levels by approximately 80% which remained depressed during the incubation period. Fructose, however, did not protect hepatocytes from nitrofurantoin-induced cytotoxicity if GSH was depleted beforehand. Protection by fructose only occurred at concentrations which caused ATP depletion. These results suggest that fructose prevents nitrofurantoin-induced toxicity by depleting ATP and thereby preventing the ATP-dependent GSSG efflux. GSSG is retained enabling NADPH and glutathione-reductase to reduce the GSSG back to GSH, thereby protecting the cell from nitrofurantoin-induced oxidative stress.  相似文献   

5.
The copper-chelating thiol drug diethyldithiocarbamate protected isolated hepatocytes from benzoquinone-induced alkylation cytotoxicity by reacting with benzoquinone and forming a conjugate which was identified by fast atom bombardment mass spectrometry as 2-(diethyldithiocarbamate-S-yl) hydroquinone. In contrast to benzoquinone, the conjugate was not cytotoxic to isolated hepatocytes. The thiol reductant dithiothreitol had no effect on benzoquinone-induced alkylation cytotoxicity. However, inactivation of catalase in the hepatocytes with azide and addition of the reducing agent ascorbate markedly enhanced the cytotoxicity of the conjugate but did not affect benzoquinone-induced cytotoxicity. Furthermore, inactivation of glutathione reductase and catalase in hepatocytes greatly enhanced the cytotoxicity of the conjugate and caused oxidation of GSH to GSSG. The conjugate also stimulated cyanide-resistant respiration, which suggests that the conjugate undergoes futile redox cycling resulting in the formation of hydrogen peroxide which causes cytotoxicity in isolated hepatocytes only if the peroxide detoxifying enzymes are inactivated. Diethyldithiocarbamate does, however, protect uncompromised isolated hepatocytes from benzoquinone cytotoxicity by conjugating benzoquinone, thereby preventing the electrophile from alkylating essential macromolecules. Diethyldithiocarbamate therefore changed the initiating cytotoxic mechanism of benzoquinone from alkylation to oxidative stress, which was less toxic.  相似文献   

6.
The effects of hormones on the cytochrome spectra of isolated hepatocytes were recorded under conditions of active gluconeogenesis from L-lactate. Glucagon, phenylephrine, vasopressin and valinomycin, at concentrations that caused stimulation of gluconeogenesis, increased the reduction of the components of the cytochrome bc1 complex, just as has been observed in liver mitochondria isolated from glucagon-treated rats [Halestrap (1982) Biochem. J. 204, 37-47]. The effects of glucagon and phenylephrine were additive. The time courses of the increased reduction of cytochrome c/c1 and NAD(P)H/NAD(P)+ caused by hormones, valinomycin, A23187 and ethanol were measured by dual-beam spectrophotometry and fluorescence respectively. Ethanol (14 mM) produced a substantial rise in NAD(P)H fluorescence, beta-hydroxybutyrate/acetoacetate and lactate/pyruvate ratios, no change in cytochrome c/c1 reduction, a 10% decrease in O2 consumption and a 60% decrease in gluconeogenesis. Glucagon, phenylephrine and vasopressin caused a substantial and transient rise in NAD(P)H fluorescence, but a sustained increase in cytochrome c/c1 reduction and the rates of O2 consumption and gluconeogenesis. The transience of the fluorescence response was greater in the absence of Ca2+, when the cytochrome c/c1 response also became transient. The fluorescence response was smaller and less transient, but the cytochrome c/c1 response was greater, in the presence of fatty acids. Both responses were greatly decreased by the presence of 1 mM-pent-4-enoate. Valinomycin (2.5 nM) caused a decrease in NAD(P)H fluorescence coincident with an increase in cytochrome c/c1 reduction and the rate of gluconeogenesis and O2 consumption. A23187 (7.5 mM) caused increases in both NAD(P)H fluorescence and cytochrome c/c1 reduction. The effects of hormones and valinomycin on the time courses of NAD(P)H fluorescence, cytochrome c/c1 reduction and light-scattering by hepatocytes were compared with those of 0.5 microM-Ca2+ or 1 nM-valinomycin on the same parameters of isolated liver mitochondria. It is concluded that hormones increase respiration by hepatocytes in a biphasic manner. An initial Ca2+-dependent activation of mitochondrial dehydrogenases rapidly increases the mitochondrial [NADH], which is followed by a volume-mediated stimulation of fatty acid oxidation and electron flow between NADH and cytochrome c. 10. Amytal (0.5 mM) was able to reverse the effects of hormones on the reduction of cytochromes c/c1 and the rates of gluconeogenesis and O2 consumption without significantly lowering tissue [ATP].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Although N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methylmethanesulfonate (MMS) cause injury and malondialdehyde formation in rat hepatocytes, MNNG toxicity is much more sensitive to inhibition by antioxidants. In order to quantify the relationship between toxicity and antioxidation potential, we compared 14 antioxidants that protected against MNNG and MMS toxicity. Chemoprotection was quantified as the concentration that delayed by 1 h the decline in trypan blue exclusion to less than or equal to 50%. While chemoprotection against MNNG and antioxidant efficacy were directly related (R = 0.86), chemoprotection against MMS and antioxidant efficacy were unrelated (R = 0.37). Since we hypothesized that protection against MMS involved stabilization of membranes, the capacity of the 14 compounds to stabilize membranes in an unrelated system (i.e. prevention of erythrocyte osmotic rupture) was assayed. Chemoprotection against both MNNG and MMS correlated with reduced RBC fragility (R = 0.97 and 0.70, respectively). One of the better protecting compounds, 4b,5,9b,10-tetrahydroindeno[1,2-b]indole, was also protective against hepatocellular toxicity mediated by acetaminophen, carbon tetrachloride and tert-butyl hydroperoxide, suggesting a fundamental basis in the mechanism of chemoprotection. We propose that methylating agents and perhaps other chemical toxicants destabilize cellular membranes resulting in hepatocellular injury. For MNNG, radical mediated events may result in membrane destabilization; for MMS, membranes are destabilized without concurrent radical events. The current studies provide a basis for future work to determine structure-activity relationships of chemoprotective agents, examine protection mechanisms, and develop better protective compounds.  相似文献   

8.
The ability of naphthalene 1,2-oxide to diffuse across intact cellular membranes, the subsequent biotransformation of this epoxide and its potential to produce losses in cellular viability have been examined in incubations of isolated hepatocytes. Addition of 1R,2S- or 1S,2R-naphthalene oxide enantiomers (15, 30 and 60 microM) to isolated hepatocytes resulted in a rapid depletion of intracellular glutathione. Depletion of glutathione was concentration dependent and maximal at 5-15 min. Addition of either of the enantiomeric oxides at 60 microM resulted in the loss of more than 20 nmol glutathione/10(6) cells (1 ml cells); thus more than a third of the added epoxide was available for conjugation with intracellular glutathione. The time course and concentration dependence of glutathione depletion corresponded to the rapid, concentration-dependent formation of naphthalene oxide glutathione conjugates. The levels of glutathione adduct were highest 1 min after addition of naphthalene oxide and declined to 25% of this level after 30 min. Loss of glutathione conjugates from incubations correlated with the formation of N-acetylcysteine adducts. In contrast, the levels of glutathione adducts added exogenously to hepatocytes were relatively stable over a 120-min incubation suggesting that although further metabolism of naphthalene oxide glutathione adducts formed intracellularly is possible, extracellular glutathione adducts cannot penetrate the hepatocellular membrane. Small amounts of radiolabel from [3H]naphthalene 1,2-oxide were bound covalently to macromolecules in hepatocytes; the rate of this binding slowed rapidly after the first minute of incubation. Severe blebbing of the surface of the hepatocytes was noted in cells incubated for 30 min with 480 microM naphthalene oxide. Many of the cells were vacuolated at 60 min and progressed to frank necrosis with pyknotic nuclei and inability to exclude trypan blue. Cells incubated with 1-naphthol responded in a qualitatively similar fashion to those cells incubated with epoxide; however, hepatocytes incubated with 1-naphthol progressed to frank cellular necrosis at a slower rate. In hepatocytes partially depleted of glutathione by pretreatment with buthionine sulfoximine, addition of 1S,2R-naphthalene oxide at a rate of 1 nmol/min/10(6) cells resulted in significant losses in cell viability. In contrast, no losses in cell viability were observed with the enantiomer, 1R,2S-naphthalene oxide. Both epoxides produced similar losses in cellular glutathione levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The mechanism of cocaine-induced cytotoxicity was investigated in hepatocytes isolated from both male C3H mice and male Sprague-Dawley rats. Cocaine was more cytotoxic to mouse hepatocytes than rat and induced reduced glutathione (GSH) depletion prior to marked increases in cytotoxicity in both systems. In both mouse and rat cells, GSH depletion was accompanied by GSSG production, but in rat cells, quantitative measures suggested that other mechanisms contributed to GSH depletion. No cocaine-induced depletion of protein-thiol groups or generation of protein-glutathione mixed disulfides could be detected in rat cells. Cocaine induced lipid peroxidation, using malondialdehyde (MDA) production as an index of the peroxidation process, in both mouse and rat hepatocytes. Inhibition of MDA production to below control levels using the antioxidant N,N'-diphenyl-phenylene diamine (DPPD) however, had no inhibitory effect on cocaine-induced cytotoxicity in either mouse or rat cells. These data suggest that neither generalized protein thiol depletion nor lipid peroxidation are critical determinants of cocaine-induced cytotoxicity in cellular systems.  相似文献   

10.
The mechanism of the periportal (p.p.) toxicity of allyl alcohol (AlOH) was investigated in p.p. and perivenous (p.v.) hepatocytes isolated by digitonin-collagenase perfusion. The distinct origin of the cell preparations was confirmed by the p.p./p.v. ratios of alanine aminotransferase (p.p./p.v. = 1.8), lactate dehydrogenase (1.3) and glutamine synthetase (0.10). The activity of alcohol dehydrogenase (ADH) was not markedly different in p.p. and p.v. cells. Both types of cells oxidized AlOH at a high but equal rate of about 3 mumol/(min.g cells). Concomitantly with rapid oxidation of 0.7 mM AlOH, glutathione (GSH) was depleted by about 95% and its secretion was completely inhibited in both cell types. Although the GSH content was partially restored during a subsequent 3-h incubation, cellular ATP and K+ content gradually decreased and the leakage of lactate dehydrogenase increased in both types of cells. However, the p.p. cells tended to resist AlOH in vitro better, probably due to their 26% higher GSH content after preincubation with L-methionine. Altering the partial pressure of oxygen in physiological range had no effect on the toxicity of AlOH. The results are contrary to the suggestions that the p.p. location of AlOH liver injury is caused by higher ADH activity or higher oxygen tension in the p.p. zone. Rather, the regiospecificity of the injury may be due to rapid uptake and oxidation of AlOH in the p.p. region.  相似文献   

11.
When isolated hepatocytes were exposed to tert-butyl hydroperoxide (tBOOH) they lost their cellular membrane integrity. Decreased levels of GSH, increased phosphorylase a activity (an indirect index of the amount of free cytosolic Ca2+), and increase in the formation of malondialdehyde (MDA)-like products (an index of lipid peroxidation) preceeded the release into the culture medium of the cytosolic enzyme lactate dehydrogenase (LDH), indicating that this later process was the consequence of the former intracellular events. While ATP levels were not modified during the incubation of cells with increasing concentrations of tBOOH, protein synthesis was decreased in a concentration-dependent manner. The glycogen content decreased at the same time as the increase in LDH leakage. The addition of promethazine (PMZ) an antioxidant molecule, prevented the lipid peroxidation, but did not protect cells against the oxidative effects of tBOOH, including loss of membrane integrity. Nevertheless, the addition of GSH to cell suspensions incubated with tBOOH, decreased the formation of MDA-like products, restored the protein synthesis rate, prevented partially the activation of phosphorylase a and preserved cell viability. On the basis of these results, we postulate that both GSH depletion and modification in phosphorylase a activity (Ca2+ levels) were the most relevant intracellular events to explain the cytotoxicity of tBOOH.Abbreviations tBOOH tert-butyl hydroperoxides - GSH reduced glutathione - LDH lactate dehydrogenase - MDA malondialdehyde - TBA thiobarbituric acid - PMZ promethazin - BSA bovine serum albumin  相似文献   

12.
The rate of flux through pyruvate kinase in isolated rat hepatocytes has been estimated by a new procedure involving direct spectrophotometric measurement of pyruvate production by liver cells suspended in an oxygenated medium containing lactate dehydrogenase and NADH. For the substrates, glucose, dihydroxyacetone, fructose, propionate and galactose only the rate of pyruvate production from glucose and galactose was inhibited by the addition of 1 μM-glucagon. These results imply that glucagon mediates glycolytic flux at a point in the pathway preceding the point of entry of fructose and dihydroxyacetone and not at pyruvate kinase.  相似文献   

13.
In order to clarify the role of oxidative processes in cytotoxicity we have studied the metabolism and toxicity of 2-methyl-1,4-naphthoquinone (menadione) and its 2,3 dimethyl (DMNQ) and 2,3 diethyl (DENQ) analogs in isolated rat hepatocytes. The two analogs, unlike menadione, cannot alkylate nucleophiles directly and were considerably less toxic than menadione. This decreased toxicity was consistent with the inability of DMNQ and DENQ to alkylate but we also found them to undergo lower rates of redox cycling in hepatocytes and a higher ratio of two electron as opposed to one electron reduction relative to menadione. Thus, facile analysis of the respective roles of alkylation and oxidation in cytotoxicity was not possible using these compounds. In hepatocytes pretreated with bischloroethyl-nitrosourea (BCNU) to inhibit glutathione reductase, all three naphthoquinones caused a potentiation of reduced glutathione (GSH) removal/oxidized glutathione (GSSG) generation and cytotoxicity relative to that observed in control cells. These data show that inhibition of hepatocyte glutathione reductase by BCNU results in enhanced naphthoquinone-induced oxidative challenge and subsequent cellular toxicity. That DMNQ and DENQ are cytotoxic, albeit at high concentrations, and that this cytotoxicity is potentiated by BCNU pretreatment suggest that oxidative processes alone can be a determinant of cytotoxicity.  相似文献   

14.
1. The effect of a redox cycler and arylator (menadione) and a pure arylator quinone (benzoquinone) was studied on different NADPH generating and consuming processes in isolated mouse hepatocytes. 2. Menadione inhibited gluconeogenesis from alanine but not from fructose or glycerol. 3. Drug oxidation measured as aniline hydroxylation and aminopyrine N-demethylation could be inhibited by menadione in microsomal membrane and in isolated hepatocytes both from fed or fasted animals. 4. Ureogenesis in isolated hepatocytes from fed mice could not be inhibited even by high concentration of menadione, while in cells from fasted animals menadione was inhibitory at high concentration in the presence of gluconeogenic precursor and at lower concentration in the absence of it. 5. Benzoquinone did not inhibit the above mentioned processes.  相似文献   

15.
The relationships between mitochondrial transmembrane potential, ATP concentration, and cytotoxicity were evaluated after exposure of isolated rat hepatocytes to different mitochondrial poisons. Both the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its fully oxidized metabolite, the 1-methyl-4-phenylpyridinium (MPP+) ion, caused a concentration- and time-dependent depolarization of mitochondrial membranes which followed ATP depletion and preceded cytotoxicity. The effect of MPTP, but not that of MPP+, was prevented by deprenyl, an inhibitor of MPTP conversion to MPP+ via monoamine oxidase type B. Addition of fructose to the hepatocyte incubations treated with either MPTP or MPP+ counteracted the loss of mitochondrial transmembrane potential. Fructose was also effective in protecting against the mitochondrial membrane depolarization as well as ATP depletion and cytotoxicity induced by antimycin. A, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, and valinomycin. Data confirm the key role played by MPP(+)-induced mitochondrial damage in MPTP toxicity and indicate that (i) ATP produced via the glycolytic pathway can be utilized by hepatocytes to maintain mitochondrial electrochemical gradient, and (ii) a loss of mitochondrial membrane potential may occur only when supplies of ATP are depleted.  相似文献   

16.
Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2μM, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)≈6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity.  相似文献   

17.
18.
The incubation of isolated rat hepatocytes with extracellular adenosine 5′-trihosphate (ATP) resulted in an inhibition of Ca2+ efflux. The ATP-induced Ca2+ accumulation as determined by the increase in phosphorylase a activity and the Ca2+ -sensitive fluorescent indicator (2-[(2-bis-[carboxymethyl]-amino-5-methylphenoxy)-methyl]-6-methoxy-8-bis-[carboxymethyl] aminoquinoline-tetrakis-[acetoxymethyl]ester) (Quin 2-AM) was associated with both the hydrolysis of ATP and the phosphorylation of a 110 kDa protein. No significant alteration in the intracellular ATP level was observed. The appearance of surface blebs and cytotoxicity followed the rise in cytosolic Ca2+, suggesting that the increased free Ca2+ may be responsible for the loss of viability. When a calmodulin inhibitor, 1-[bis(4-chlorophenyl)methyl]-3-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy] ethyl]-1H-imidazolium chloride (calmidazolium), was included in the medium prior to ATP addition, bleb formation was reduced and the loss of viability was completely prevented, indicating that a Ca2+ -calmodulin process may be involved in the initiation of cytotoxicity.  相似文献   

19.
Diquat is a hepatotoxin whose toxicity in vivo and in vitro is mediated by redox cycling and greatly enhanced by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. The mechanism by which redox cycling mediates diquat cytotoxicity is unclear, however. Here, we have attempted to examine the roles of three potential products of redox cycling, namely superoxide anion radical (O2-.), hydrogen peroxide (H2O2), and hydroxyl radical (.OH), in the toxicity of diquat to BCNU-treated isolated hepatocytes. Addition of high concentrations of catalase, but not superoxide dismutase, to the incubations provided some protection against the toxic effect of diquat, but much better protection was observed when catalase was added in combination with the iron chelator desferrioxamine. Addition of desferrioxamine alone also provided considerable protection, whereas the addition of copper ions enhanced diquat cytotoxicity. Taken together, these results indicate that both H2O2 and the transition metals iron and copper could play major roles in the cytotoxicity of diquat. The role of O2-. remains less clear, however, but studies with diethylenetriaminepentaacetic acid indicate that O2-. is unlikely to significantly contribute to the reduction of Fe3+ to Fe2+. The hydroxyl radical or a related species seems the most likely ultimate toxic product of the H2O2/Fe2+ interaction, but hydroxyl radical scavengers afforded only minimal protection.  相似文献   

20.
Alkyl esters of gallic acid inhibited the respiration rate of mouse sarcoma 786A and mouse mammary adenocarcinoma TA3 cell lines and its multiresistant variant TA3-MTX-R more effectively than gallic acid, both in the absence and in the presence of the uncoupler CCCP. The order of inhibition of the respiration rate by gallates in intact cells was n-octyl- approximately iso-amyl- approximately n-amyl- approximately iso-butyl->n-butyl->iso-propyl->n-propyl-gallate>gallic acid. Sarcoma 786A was significantly more susceptible to all seven esters than the TA3 cell line. Respiration rates of the TA3-MTX-R cell line showed almost the same sensitivity to these esters as the TA3 cell line. However, hepatocytes were significantly less sensitive than all tumor cells tested. These alkyl gallates blocked mitochondrial electron flow, mainly at the NADH-CoQ segment, preventing ATP synthesis, which would lead to cellular death. These esters also inhibited, in the same order of potencies as respiration, the growth of 786A, TA3 and TA3-MTX-R cells in culture. In mice carrying TA3 or TA3-MTX-R tumor cells, an important decrease of the tumor growth rate and an increase of survival were observed when mice were treated with iso-butyl gallate alone or in combination with doxorubicin. These results indicate that alkyl gallates are selectively cytotoxic to tumor cells, which may be due to the mitochondrial dysfunctions of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号