首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D J O'Kane  J Lee 《Biochemistry》1985,24(6):1467-1475
The properties of lumazine proteins purified from the marine bioluminescent bacteria Photobacterium phosphoreum, a psychrophile, and Photobacterium leiognathi, a relatively thermophilic species, are compared. An accurate 1:1 stoichiometry of binding of the ligand 6,7-dimethyl-8-ribityllumazine to each lumazine protein is established by back-titration of the apoprotein with the authentic ligand, using both fluorescence and absorption measurements. Neither protein contains metal cofactors, organic phosphorus, or carbohydrate. Both proteins are anionic and hydrophilic. They each contain a single Trp residue and have blocked amino terminals but otherwise differ in amino acid composition and other properties (P. phosphoreum and P. leiognathi, respectively): Met (internal), 1, 2; Cys, 2, 1; Arg, 4, 7; pI, 4.78 and 4.83, 4.38 and 4.45; Mr, 19 750, 21 300. In the P. phosphoreum protein both Cys residues are accessible, but in the P. leiognathi protein the single Cys is "buried". Modification of this buried Cys and at least one Cys in the P. phosphoreum protein prevents binding of the ligand. The UV and visible absorption spectra of both lumazine proteins denatured in 6 M guanidine hydrochloride can be accurately modeled by using the number of equivalents of the lumazine derivative and blocked aromatic amino acid model compounds determined by chemical and spectrophotometric analyses for Trp, Tyr, and Phe.  相似文献   

2.
D J O'Kane  V A Karle  J Lee 《Biochemistry》1985,24(6):1461-1467
Bright strains of the marine bioluminescent bacterium Photobacterium leiognathi produce a "lumazine protein" in amounts comparable to that previously found in Photobacterium phosphoreum. New protocols are developed for the purification to homogeneity of the proteins from both species in yields up to 60%. In dimmer strains the amounts of lumazine protein in extracts are less, and also there is an accompanying shift of the bioluminescence spectral maximum to longer wavelength, 492 nm. Both types of lumazine proteins have identical fluorescence spectra, with maxima at 475 nm, so it is suggested that, whereas lumazine protein is the major emitter in bright strains, there is a second emitter also present with a fluorescence maximum at longer wavelength. The two species of lumazine protein have the same 276 nm/visible absorbance ratio, 2.2, but differ in visible maxima: P. phosphoreum, 417 nm; P. leiognathi, 420 nm. For the latter the bound lumazine has epsilon 420 = 10 100 M-1 cm-1, practically the same as in free solution. The two lumazine proteins also differ quantitatively in their effect on the in vitro bioluminescence reaction, i.e., at blue shifting the bioluminescence spectrum or altering the kinetics. The P. phosphoreum lumazine protein is more effective with its homologous luciferase or with P. leiognathi luciferase than is the lumazine protein from P. leiognathi. These differences may have an electrostatic origin.  相似文献   

3.
J Lee  Y Y Wang  B G Gibson 《Biochemistry》1991,30(28):6825-6835
Fluorescence dynamics measurements have been made on the bioluminescence reaction intermediates using Photobacterium leiognathi, Vibrio fischeri, and Vibrio harveyi luciferases, both alone and in mixtures with Photobacterium phosphoreum lumazine protein. Each luciferase produces a "fluorescent transient" intermediate on reaction with the bioluminescence substrates, FMNH2, tetradecanal, and O2, and all have a fluorescence quantum yield about 0.3, with a predominant lifetime around 10 ns. The P. leiognathi luciferase fluorescent transient has a rotational correlation time of 79 ns at 2 degrees C, as expected for the rotational diffusion of a 77-kDa macromolecule. In the presence of lumazine protein however a faster correlation time of about 3 ns predominates. This rapid channel of anisotropy loss is attributed to energy transfer from the flavin intermediate bound on the luciferase to the lumazine ligand, reflects the presence of protein-protein complexation, and is greatest in the case of P. leiognathi, but not at all for V. fischeri. This fact is consistent with the strong influence of lumazine protein on the bioluminescence reaction of P. leiognathi, and not at all with V. fischeri. The rate of energy transfer is of order 10(9) s-1, much greater than the 10(8) s-1 fluorescence rate of the donor. Thus the bioluminescence excitation of lumazine protein could occur by a similar photophysical mechanism of interprotein energy transfer from a chemically excited fluorescent transient donor to the lumazine acceptor.  相似文献   

4.
The equilibrium association of lumazine protein from Photobacterium phosphoreum with luciferases from either P. phosphoreum or an aldehyde-requiring dark mutant of Vibrio harveyi is measured from changes of the rotational correlation time which is derived from the decay of the lumazine ligand's fluorescence anisotropy. The rotational correlation time of lumazine protein is 23 ns (2 degrees C, 0.25 M Pi) and is increased on addition of luciferase due to the formation of a higher molecular weight complex. The V. harveyi luciferase exhibits full competence for the association and a 1:1 stoichiometry with a Kd in the range 40-90 microM. At lower ionic strength (0.05 M Pi), the Kd increases but is reduced again by the addition of dodecanol or dimyristoyllecithin. In contrast, tetradecanal, a substrate for the bioluminescence reaction, exerts no influence on the association. The equilibration rate is found to be too slow and for both luciferases the Kd values are too high for the interaction of the native proteins to account quantitatively for the spectral shifting of the bioluminescence by lumazine protein.  相似文献   

5.
The interaction between the prosthetic group 6,7-dimethyl-8-(1'-D-ribityl)lumazine and the lumazine apoproteins from two marine bioluminescent bacteria, one from a relatively thermophilic species, Photobacterium leiognathi, and the other from a psychrophilic species, Photobacterium phosphoreum, was studied by 13C and 15N NMR using various selectively enriched derivatives. It is shown that the electron distribution in the protein-bound 6,7-dimethyl-8-ribityllumazine differs from that of free 6,7-dimethyl-8-ribityllumazine in buffer. The 13C and 15N chemical shifts indicate that the protein-bound 6,7-dimethyl-8-ribityllumazine is embedded in a polar environment and that the ring system is strongly polarized. It is concluded that the two carbonyl groups play an important role in the polarization of the molecule. The N(3)-H group is not accessible to bulk solvent. The N(8) atom is sp2 hybridized and has delta+ character. Nuclear Overhauser effect studies indicate that the 6,7-dimethyl-8-ribityllumazine ring is rigidly bound with no internal mobility. The NMR results indicate that the interaction between the ring system and the two apoproteins is almost the same.  相似文献   

6.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

7.
J Lee  D J O'Kane  A J Visser 《Biochemistry》1985,24(6):1476-1483
The spectral properties are compared for two 6,7-dimethyl-8-ribityllumazine proteins from marine bioluminescent bacteria, one from a psychrophile, Photobacterium phosphoreum, and the other from a thermophile, Photobacterium leiognathi. The visible spectral properties, which are the ones by which the protein performs its biological function of bioluminescence emission, are almost the same for the two proteins: at 2 degrees C and 50 mM Pi, pH 7, fluorescence quantum yield phi F = 0.59 and 0.54, respectively; fluorescence lifetime tau = 14.4 and 14.8 ns, respectively; fluorescence maxima, both 475 nm; absorption maximum, 417 and 420 nm, respectively; circular dichroism minima at around 420 nm, both -41 X 10(3) deg cm2 dmol-1. The ligand binding sites therefore must provide very similar environments, and arguments are presented that the bound ligand is relatively exposed to solvent. The dissociation equilibrium was studied by steady-state fluorescence polarization. The thermophilic protein binds the ligand with Kd (20 degrees C) = 0.016 microM, 10 times more tightly than the other protein [Kd (20 degrees C) = 0.16 microM]. The origin of the binding difference probably resides in differences in secondary structure. The tryptophan fluorescence spectra of the two proteins are different, but more significant is an observation of the decay of the tryptophan emission anisotropy. For the psychrophilic lumazine protein this anisotropy decays to zero in 1 ns, implying that its single tryptophan residue lies in a very "floppy" region of the protein. For the other protein, the anisotropy exhibits both a fast component and a slow one corresponding to rotation of the protein as a whole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To rapidly identify natural isolates of marine bioluminescent bacteria, we developed amplified ribosomal DNA restriction analysis (ARDRA) methods. ARDRA, which is based on the restriction patterns of 16S rRNA gene digested with five enzymes (EcoRI, DdeI, HhaI, HinfI, RsaI), clearly distinguished the 14 species of marine bioluminescent bacteria currently known, which belong to the genera Vibrio, Photobacterium, and Shewanella. When we applied ARDRA to 129 natural isolates from two cruises in Sagami Bay, Japan, 127 were grouped into six ARDRA types with distinctive restriction patterns; these isolates represented the bioluminescent species, P. angustum, P. leiognathi, P. phosphoreum, S. woodyi, V. fischeri, and V. harveyi. The other two isolates showing unexpected ARDRA patterns turned out to have 16S rRNA gene sequences similar to P. leiognathi and P. phosphoreum. Nevertheless, ARDRA provides a simple and fairly robust means for rapid identification of the natural isolates of marine bioluminescent bacteria, and is therefore useful in studying their diversity.  相似文献   

9.
Four genes immediately downstream of luxG in the Photobacterium phosphoreum lux operon (ribEBHA) have been sequenced and shown to be involved in riboflavin synthesis. Sequence analyses and complementation of Escherichia coli riboflavin auxotrophs showed that the gene products of ribB and ribA are 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthetase and GTP cyclohydrolase II, respectively. By expression of P. phosphoreum ribE in E. coli using the bacteriophage T7 promoter-RNA polymerase system, ribE was shown to code for riboflavin synthetase, which catalyzes the conversion of lumazine to riboflavin. Increased thermal stability of RibE on expression with RibH indicated that ribH coded for lumazine synthetase. The organization of the rib genes in P. phosphoreum is quite distinct, with ribB and ribA being linked but separated by ribH, whereas in E. coli, they are unlinked and in Bacillus subtilis, RibB and RibA functions are coded by a single gene.  相似文献   

10.
The hydrodynamic behaviour of benzodiazepine receptors solubilized by deoxycholate from calf cerebral cortex reveals two molecular forms. The Stokes radii are 46.5 A and 67.2 A, and the sedimentation coefficients are 10.9 S and 14.6 S. The calculated apparent molecular weights and frictional ratios suggest either two nearly globular proteins of ca. 200K and 400K daltons each, or two ca. 300K daltons proteins which differ significantly in their degree of asymmetry. The benzodiazepine binding site is located on ca. 51K daltons component(s) in both forms.  相似文献   

11.
The examination of four species of luminous bacteria Photobacterium leiognathi, Photobacterium phosphoreum, Vibrio fischeri and Vibrio harveyi has enabled us to reveal some nutrient medium components effecting growth, luminescence intensity and luciferase synthesis. These agents are nucleic components (nucleotides, nucleosides and amine bases), amino acids and vitamins, which are part of hydrolysates from the biomass of various lithotrophic microorganisms, hydrogen-oxidizing, ironoxidizing and carboxydobacteria. The effect of promoting agents essentially alters the physiological state and ultrastructure of the cells of luminous bacteria and increases luciferase biosynthesis two- to three-fold compared to a control.  相似文献   

12.
Conditions that influence the luminescence of natural and recombinant luminescent bacteria in the presence of blood serum were studied. In general, blood serum quenched the luminescence of the marine Photobacterium phosphoreum and the recombinant Escherichia coli strains harboring the luminescent system genes of Photobacterium leiognathi, but enhanced the luminescence of the soil bacterium Photorhabdus luminescens Zm1 and the recombinant E. coli strain harboring the lux operon of P. luminescens Zm1. The quenching effect of blood serum increased with its concentration and the time and temperature of incubation. The components of blood serum that determine the degree and specificity of its action on bacterial luminescence were identified.  相似文献   

13.
一株与鳆发光杆菌最相似细菌的研究   总被引:1,自引:1,他引:0  
对从海鲜食品中分离到的1株少见细菌M1进行系统分类鉴定。采用常规方法[1]进行分离培养,以形态学特征、培养特性、生理生化特征以及分子生物学等方法对其进行分类鉴定。结果可见,该菌株为革兰氏阴性杆状细菌,16SrDNA核甘酸序列测定与鳆发光杆菌最为相似,生理生化特征与发光杆菌属、弧菌属相近,但都不完全相符,而与鳆发光杆菌相似性最高。  相似文献   

14.
Strains representative of species of the marine genera Beneckea and Photobacterium were used as reference standards in in vitro DNA/DNA competition experiments. Within a given species, strains were found to be related by over 80% competition. (Competition was defined as the amount of radioactive DNA displaced by heterologous DNA relative to the amount displaced by homologous DNA.) On the basis of interspecies competition values (expressed as averages), the following groupings could be made: 1. "Photobacterium" fischeri was related to strain ATCC 15382 by a competition of 38% and was distinct from all the other strains tested (competition less than or equal to 11%). 2. The genus Photobacterium consisted of 3 species, P.phosphoreum, P.leiognathi, and a newly designated species, P.angustum (composed of non-luminous strains). The latter species was found to be related to P.leiognathi and P.phosphoreum by 56 and 28% competition, respectively, while P.phosphoreum was related to P.leiognathi by 29%. 3. In the genus Beneckea, 65% competition was detected between B.harveyi and B.campbellii as well as between B.parahaemolytica and B.alginolytica. These pairs of species were related to each other by 51-58% and to B.natriegens by 34-56% competition. A newly designated pathogenic species, B.vulnifica, appeared to have a low but significant relationship to all the above mentioned species of Beneckea. 4. Two biotypes, related by 68% competition, were recognized in the species B.splendida. Similarly, B.pelagia was found to consist of 2 biotypes related by a competition of 67%. The competition values between these species were 38-40%. 5. B.nereida, B.nigrapulchrituda, and "Vibrio" anguillarum had competition values less than or equal to 30% to each other as well as to other species of Beneckea. 6. With Vibrio cholerae as the reference standard, V.albensis was found to be related by a competition of 82%, while V.proteus and V.metschnikovii had competition values of 22 and 12%, respectively. These results suggested that V.albensis should be synonymized with V.cholerae, while the latter two organisms should remain distinct from this species. V.cholerae as well as the other terrestrial organisms tested did not appear to be significantly related to any of the marine strains (competition values less than or equal to 27%). The speciation derived from the results of the DNA/DNA competition experiments was compared to previous speciation based on phenotypic similarities.  相似文献   

15.
Bacteriocuprein superoxide dismutases in pseudomonads.   总被引:23,自引:11,他引:12       下载免费PDF全文
Two new instances of the rare bacteriocuprein form of superoxide dismutase have been discovered in Pseudomonas diminuta and P. maltophilia. Each species contains a manganese superoxide dismutase as well. Eight other strains of Pseudomonas and Xanthomonas spp. lacked bacteriocupreins and contained either a manganese or an iron superoxide dismutase. Native molecular weights and isoelectric points were determined for all these bacterial dismutases. A monospecific polyclonal antibody was prepared against the bacteriocuprein from Photobacterium leiognathi; it was not cross-reactive with the bacteriocuprein from either Pseudomonas strain. Bacteriocupreins have previously been identified in only two procaryotes, P. leiognathi and Caulobacter crescentus. The discovery of the Pseudomonas bacteriocupreins reveals a broader distribution, raising the possibility that bacteriocupreins are a continuous line of descent among procaryotes and not isolated evolutionary occurrences, as previous data suggested.  相似文献   

16.
17.
6,7-Dimethyllumazine derivatives, substituted at the 8-position with aldityls or monohydroxyalkyl groups, have been examined for their binding ability to lumazine apo-protein from two strains of Photobacterium phosphoreum using fluorescence dynamics techniques. On the protein the lumazine has a nearly monoexponential decay of fluorescence with lifetime 13.8 ns (20 degrees C). In free solution the lifetime is 9.6 ns. The concentration of free and bound lumazine in an equilibrium mixture can be recovered readily by analysis of the fluorescence decay. Only the aldityl derivatives D-xylityl and 3'-deoxy-D-ribityl, having stereoconfigurations at the 2' and 4' positions identical to the natural ligand, 8-(1'-D-ribityl), show comparable dissociation constants (0.3 microM, 20 degrees C, pH 7.0). D-Erythrityl and L-arabityl have dissociation constants of 1-2 microM. All other ligands show no interaction at all or have dissociation constants in the range 6-80 microM, which can still be determined semi-quantitatively using the fluorescence decay technique. In the case of these very weakly bound ligands, unambiguous detection of bound ligand can be shown by a long correlation time (23 ns, 2 degrees C) for the fluorescence anisotropy decay. Examination of the bound D-xylityl compound's fluorescence anisotropy decay at high time resolution (< 100 ps) shows rigid association, i.e. no mobility independent of the macromolecule. All bound ligands appear to be similarly positioned in the binding site. The influence of the stereoconfiguration at the 8-position found for lumazine protein parallels that previously observed for the enzyme riboflavin synthase, where the lumazines are substrates or inhibitors. This is consistent with the finding of significant sequence similarity between these proteins. The binding rigidity may have implications for the mechanism of the enzyme.  相似文献   

18.
The genes of Photobacterium leiognathi luminescence system were cloned in plasmid pUC18. Escherichia coli cells harboring a recombinant plasmid pPHL1 are luminescent. pPHL1 contains luciferase genes and genes responsible for aldehyde biosynthesis. The luminescence of Escherichia coli is subject to autoinductor regulation similar to the one existing in luminescent bacteria. The 2.7 kb fragment of Photobacterium leiognathi DNA containing the genes for alpha- and beta-luciferase subunits were cloned in pUC19.  相似文献   

19.
20.
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1989,28(10):4263-4271
The mechanism of the shifting of the bioluminescence spectrum from the reaction of bacterial luciferase by lumazine protein is investigated by methods of fluorescence dynamics. A metastable intermediate is produced on reaction of Vibrio harveyi luciferase with FMNH2 and O2. It has an absorption maximum at 374 nm and a rotational correlation time (phi) derived from the decay of its fluorescence (maximum 500 nm) anisotropy of 90 ns (2 degrees C). Lumazine protein from Photobacterium phosphoreum has an absorption maximum at 417 nm and a fluorescence maximum at 475 nm. Lumazine protein forms a protein-protein complex with luciferase, and the complex has a phi of approximately 100 ns. A mixture of lumazine protein and the intermediate would be expected to have an average correlation time (phi av) around 100 ns, but instead, the result is anomalous. The phi av is much lower and is also wavelength dependent. For excitation at 375 nm, which is mainly absorbed in the flavin chromophore of the intermediate, phi av = 25 ns, but at 415 nm, mainly absorbed by the lumazine derivative ligand of lumazine protein, phi av approximately 50 ns. It is proposed that protein-protein complexation occurs between lumazine protein and the luciferase intermediate and that in this complex energy transfer from the flavin to the lumazine is the predominant channel of anisotropy loss. A distance of 20 A between the donor and acceptor is calculated. In the bioluminescence reaction of intermediate with tetradecanal, a fluorescent transient species is produced which is the bioluminescence emitter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号