首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conversion of Death Signal into Survival Signal by Redox Signaling   总被引:2,自引:0,他引:2  
  相似文献   

2.
Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors   总被引:18,自引:0,他引:18  
  相似文献   

3.
4.
The possible relationships between intracellular Na(+) (Na(i)(+)), bioenergetic status and intracellular pH (pH(i)) in the mechanism for ischemic preconditioning were studied using (23)Na and (31)P magnetic resonance spectroscopy in isolated Langendorff perfused rat heart. The ischemic preconditioning (three 5-min ischemic episodes followed by two 5-min and one 10-min period of reperfusion) prior to prolonged ischemia (20 min stop-flow) resulted in a decrease in ischemic acidosis and faster and complete recovery of cardiac function (ventricular developed pressure and heart rate) after 30 min of reperfusion. The response of Na(i) during ischemia in the preconditioned hearts was characterized by an increase in Na(i)(+) at the end of preconditioning and an accelerated decrease during the first few minutes of reperfusion. During post-ischemic reperfusion, bioenergetic parameters (PCr/P(i) and betaATP/P(i) ratios) were partly recovered without any significant difference between control and preconditioned hearts. The reduced acidosis during prolonged ischemia and the accelerated decrease in Na(i)(+) during reperfusion in the preconditioned hearts suggest activation of Na(+)/H(+) exchanger and other ion transport systems during preconditioning, which may protect the heart from intracellular acidosis during prolonged ischemia, and result in better recovery of mechanical function (LVDP and heart rate) during post-ischemic reperfusion.  相似文献   

5.
6.
Fenton RA  Dickson EW  Dobson JG 《Life sciences》2005,77(26):3375-3388
Brief, nonlethal episodes of ischemia in the mammalian heart provide cardioprotection against the detrimental effects of a longer duration ischemia. The manifestation of this preconditioning (PC) phenomenon is initiated by the enhanced phosphorylation state of signal transduction proteins. We reported previously that PC is decreased in the aged rat myocardium. Although the mechanism responsible for this loss is not understood, a reduction in the phosphorylation of critical proteins associated with PC may be postulated. Experiments were conducted to investigate whether PC in the aged heart can be restored with the inhibition of endogenous protein phosphatases thereby enhancing phosphorylation of signaling proteins. Levels of phosphatase activities were also assessed with adult heart aging. Hearts from young adult (3-4 mo.) and aged (21-22 mo.) Fischer-344 rats were perfused in the presence or absence of okadaic acid (OKA; 0.1 microM). Aged adult hearts were either not preconditioned or were preconditioned with two PC cycles (5 min ischemia/5 min reperfusion). Myocardial cellular death that developed with a subsequent ischemia was determined with triphenyltetrazolium. With PC, 55% of the aged heart after ischemia was no longer viable. OKA administered before or after ischemia reduced this ischemia-induced cellular death by 29%. Without PC, OKA reduced viability 18% only when present before and after the ischemic episode. OKA in the ischemic young heart during reperfusion reduced the loss of viability 31%. The Protein Phosphatase 2A (PP2A) activity was found to be up to 82% greater in ventricular myocardium of aged rats. In conclusion, aging-induced changes in protein dephosphorylation may be one mechanism reducing the manifestation of preconditioning in the aged heart.  相似文献   

7.
Ischemic preconditioning (IP) protects the heart against subsequent prolonged ischemia. Whether the beta-adrenoceptor/adenylate cyclase pathway contributes to this cardioprotection is not yet fully known. Using enzyme catalytic cytochemistry we studied the adenylate cyclase activity and its distribution in the preconditioned rat heart. Adenylate cyclase activity was examined in Langendorff-perfused rat hearts subjected to the following conditions: control perfusion; 30 min regional ischemia; 5 min occlusion and 10 min reperfusion (IP); IP followed by ischemia. Ischemia-induced arrhythmias and the effect of ischemic preconditioning on the incidence of arrhythmias were analyzed. At the end of experiment the heart was shortly prefixed with glutaraldehyde. Tissue samples from the left ventricle were incubated in a medium containing the specific substrate AMP-PNP for adenylate cyclase and then routinely processed for electron microscopy. Adenylate cyclase activity was cytochemically demonstrated in the sarcolemma and the junctional sarcoplasmic reticulum (JSR) in control hearts, while it was absent after test ischemia. The highest activity of the precipitate was observed after ischemic preconditioning. In the preconditioned hearts followed by test ischemia, adenylate cyclase activity in the precipitate was preserved in sarcolemma and even more in JSR. Protective effect of ischemic preconditioning was manifested by the suppression of severe arrhythmias. These results indicate the involvement of the adenylate cyclase system in mechanisms underlying ischemic preconditioning.  相似文献   

8.
It has been proposed that activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) is part of signaling pathways triggering the cardioprotection afforded by ischemic preconditioning of the heart. This work was to analyze the mitochondrial function profile of Langendorff-perfused rat hearts during the different phases of various ischemia-reperfusion protocols. Specifically, skinned fibers of ischemic preconditioned hearts exhibit a decline in the succinate-supported respiration and complex II activity during ischemia, followed by a recovery during reperfusion. Meanwhile, the apparent affinity of respiration for ADP (which reflects the matrix volume expansion) is increased during preconditioning stimulus and, to a larger extent, during prolonged ischemia. This evolution pattern is mimicked by diazoxide and abolished by 5-hydroxydecanoate. It is concluded that opening the mitoKATP channel mediates the preservation of mitochondrial structure-function via a mitochondrial matrix shrinkage and a reversible inactivation of complex II during prolonged ischemic insult.  相似文献   

9.
Apoptosis or programmed cell death is a genetically controlled response for cells to commit suicide and is associated with DNA fragmentation or laddering. The common inducers of apoptosis include oxygen free radicals/oxidative stress and Ca2+ which are also implicated in the pathogenesis of myocardial ischemic reperfusion injury. To examine whether ischemic reperfusion injury is mediated by apoptotic cell death, isolated perfused rat hearts were subjected to 15, 30 or 60 min of ischemia as well as 15 min of ischemia followed by 30, 60, 90 or 120 min of reperfusion. At the end of each experiment, the heart was processed for the evaluation of apoptosis and DNA laddering. Apoptosis was studied by visualizing the apoptotic cardiomyocytes by direct fluorescence detection of digoxigenin-labeled genomic DNA using APOPTAG® in situ apoptosis detection kit. DNA laddering was evaluated by subjecting the DNA obtained from the hearts to 1.8% agarose gel electrophoresis and photographed under UV illumination. The results of our study revealed apoptotic cells only in the 90 and 120 min reperfused hearts as demonstrated by the intense fluorescence of the immunostained digoxigenin-labeled genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation which showed increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA length (about 180 bp). The presence of apoptotic cells and DNA fragmentation in the myocardium were completely abolished by subjecting the myocardium to repeated short-term ischemia and reperfusion which also reduced the ischemic reperfusion injury as evidenced by better recovery of left ventricular performance in the preconditioned myocardium. The results of this study indicate that reperfusion of ischemic heart, but not ischemia, induces apoptotic cell death and DNA fragmentation which can be inhibited by myocardial adaptation to ischemia.  相似文献   

10.
11.
12.
Claudia Penna 《BBA》2009,1787(7):781-793
A series of brief (a few minutes) ischemia/reperfusion cycles (ischemic preconditioning, IP) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Postconditioning (PostC), which is a series of brief (a few seconds) reperfusion/ischemia cycles at reperfusion onset, attenuates also ischemia/reperfusion injury. In recent years the main idea has been that reactive oxygen species (ROS) play an essential, though double-edged, role in cardioprotection: they may participate in reperfusion injury or may play a role as signaling elements of protection in the pre-ischemic phase. It has been demonstrated that preconditioning triggering is redox-sensitive, using either ROS scavengers or ROS generators. We have shown that nitroxyl triggers preconditioning via pro-oxidative, and/or nitrosative stress-related mechanism(s). Several metabolites, including acetylcholine, bradykinin, opioids and phenylephrine, trigger preconditioning-like protection via a mitochondrial KATP-ROS-dependent mechanism. Intriguingly, and contradictory to the above mentioned theory of ROS as an obligatory part of reperfusion-induced damage, some studies suggest the possibility that some ROS at low concentrations could protect ischemic hearts against reperfusion injury. Yet, we demonstrated that ischemic PostC is also a cardioprotective phenomenon that requires the intervention of redox signaling to be protective. Emerging evidence suggests that in a preconditioning scenario a redox signal is required during the first few minutes of myocardial reperfusion following the index ischemic period. Intriguingly, the ROS signaling in the early reperfusion appear crucial to both preconditioning- and postconditioning-induced protection. Therefore, our and others' results suggest that the role of ROS in reperfusion may be reconsidered as they are not only deleterious.  相似文献   

13.
Zhang H  Zhang B  Tang BY  Chen YY  Zhu L  Shen YL 《生理学报》2005,57(4):453-460
实验采用离体大鼠心脏Langendorff灌流模型,观察含巯基(卡托普利)和不含巯基(培哚普利拉)的两种血管紧张素转换酶抑制剂(angiotensin-converting enzyme inhibitors,ACEI)对抗心肌缺血的作用,并探讨一氧化氮(nitric oxide,NO)和线粒体ATP敏感性钾通道(mimchondrial ATP-sensitive potassium channel,mitoKATP channel)是否参与ACEI的心肌保护作用。结果表明:(1)给予大鼠心脏2min全心停灌和10min复灌作为闽下缺血预处理(subthreshold preconditioning,sPC)、卡托普利或培哚普利拉单独使用,均不能改善长时间缺血复灌(缺血30min+复灌120min)引起的心肌损伤。(2)当两种ACEI分别和sPC联合使用时,与sPC组相比,缺血心脏在长时间缺血后的复灌期问左室舒张末压(left ventricular end-diastolic pressure,LVEDP)明显降低,左宦发展压(left ventricular developed pressure,LVDP)和冠脉流量明显增高,乳酸脱氢酶(lactate dehydrogenase,LDH)的释放量和心肌梗死面积明显低于sPC组。(3)利用NOS抑制剂L-NAME和mitoKATP通道的抑制剂5-HD灌流10min后,可明显抑制卡托普利/培哚普利拉和sPC联合使用引起的LVEDP降低,并使LVDP和冠脉流量降低,LDH的释放量和心肌梗死面积明显增高(P〈0.05)。(4)sPC、卡托普利或培哚普利拉单独使用,心脏NO的产生增加。ACEI和sPC联合使用,与三者单独使用相比NO的浓度亦明显增高(P〈0.05)。结果提示:含与不含巯基的ACEI与闽下缺血预处理联合使用均可使大鼠心脏功能明显改善,其心肌保护作用的机制可能通过NO途径,并和mitoKATP通道的激活有关。  相似文献   

14.
A short period of ischemia followed by reperfusion produces a state of affairs in which the cells' potential for surviving longer ischemia is enhanced. This is called ischemic preconditioning. The effects of preconditioning are also related to the reperfusion damage which ensues upon tissue oxygenation. The role of the cellular energy state in reperfusion damage remains an enigma, although ischemic preconditioning is known to trigger mechanisms which contribute to the prevention of unnecessary ATP waste. In some species up to 80% of ATP hydrolysis in ischemia can be attributed to mitochondrial F1-F0-ATPase (ATP synthase), and a role for its inhibitor protein (IF1) in ATP preservation has been proposed. Although originally regarded as limited to large animals with a slow heart beat, inhibition by IF1 is probably a universal phenomenon. Coincidentally with ATPase inhibition, the decline in cellular ATP slows down, but even so the difference in ATP concentration between preconditioned and non-conditioned hearts is still small at the final stages of a long ischemia, when the beneficial effect of preconditioning is observable, although the energy state during reperfusion remains low in hearts which do not recover.  相似文献   

15.
Lecour S  Owira P  Opie LH 《Life sciences》2006,78(15):1702-1706
INTRODUCTION: Ceramide induces programmed cell death and it is thought to contribute to cardiac ischemia/reperfusion (I/R) injury. In contrast, we have demonstrated that administration of low doses of ceramide engenders cardiac preconditioning (PC). Ceramide is known to generate reactive oxygen species (ROS) in cells. Since mechanisms triggering the ceramide-induced cardioprotection remain unknown, we investigated the role of ROS in the genesis of this protective mechanism. METHODS: Using an isolated Langendorff-perfused rat heart model, four groups (n > or = 6 in each group) were considered: Control hearts underwent 30 min index regional ischemia and 120 min of reperfusion. In the ceramide group, hearts were preconditioned with c2-ceramide 1 microM for 7 min followed by 10 min washout prior to the I/R insult. In additional groups, MPG (1 mM), a synthetic antioxidant was given for 15 min alone or bracketing the ceramide perfusion. In each group, infarct size was determined at the end of the reperfusion period and superoxide dismutases (CuZnSOD and MnSOD) and catalase activities were evaluated. RESULTS: Ceramide preconditioning reduced the infarct/area at risk (I/AAR) ratio (8.3 +/- 1.1% for ceramide vs. 36.4 +/- 1.2% for control, p < 0.001). Perfusion with MPG abolished the preconditioning effect of ceramide (I/AAR ratio = 36.7 +/- 4.9%). Ceramide was also associated with a 29% and 38% increase in catalase and CuZnSOD activities, respectively, compared with control group. CONCLUSION: Production of reactive oxygen species following ceramide preconditioning of the ischemic-reperfused heart appears to play a role in the cardioprotective effect of ceramide.  相似文献   

16.
Protein kinase A (PKA) activation has been implicated in early-phase ischemic preconditioning. We recently found that during ischemia PKA activation causes inactivation of cytochrome-c oxidase (CcO) and contributes to myocardial damage due to ischemia-reperfusion. It may be that beta-adrenergic stimulation during ischemia via endogenous catecholamine release activates PKA. Thus beta-adrenergic stimulation may mediate both myocardial protection and damage during ischemia. The present studies were designed to determine the role of the beta(1)-adrenergic receptor (beta(1)-AR) in myocardial ischemic damage and ischemic preconditioning. Langendorff-perfused rabbit hearts underwent 30-min ischemia by anterior coronary artery ligation followed by 2-h reperfusion. Occlusion-reperfusion damage was evaluated by delineating the nonperfused volume of myocardium at risk and volume of myocardial necrosis after 2-h reperfusion. In some hearts ischemic preconditioning was accomplished by two 5-min episodes of global low-flow ischemia separated by 10 min before coronary occlusion-reperfusion. Orthogonal electrocardiograms were recorded, and coronary flow was monitored by a drip count. Three hearts from each experimental group were used to determine mitochondrial CcO and aconitase activities. Two-hour reperfusion after occlusion caused an additional decrease in CcO activity vs. that after 30-min occlusion alone. Blocking the beta(1)-AR during occlusion-reperfusion reversed CcO activity depression and preserved myocardium at risk for necrosis. Similarly, mitochondrial aconitase activity exhibited a parallel response after occlusion-reperfusion as well as for the other interventions. Furthermore, classic ischemic preconditioning had no effect on CcO depression. However, blocking the beta(1)-AR during preconditioning eliminated the cardioprotection. If the beta(1)-AR was blocked after preconditioning, the myocardium was preserved. Interestingly, in both of the latter cases the depression in CcO activity was reversed. Thus the beta(1)-AR plays a dual role in myocardial ischemic damage. Our findings may lead to therapeutic strategies for preserving myocardium at risk for infarction, especially in coronary reperfusion intervention.  相似文献   

17.
This study examines the hypothesis that ischemic or pharmacologic preconditioning improves postischemic mitochondrial function by attenuating oxidation of mitochondrial proteins. Isolated rat hearts were perfused for 38 min preischemia, followed by 25 min global ischemia and then 60 min reperfusion. Hearts were preconditioned by two episodes of 3 min global ischemia, followed by 2 min of reflow (IP), or by perfusion with 50 micromol/l nicorandil (Nic) for 10 min, followed by 10 min washout. IP and Nic significantly (p <.05) improved postischemic function, which was abolished by bracketing the protocols with 200 micromol/l 5-hydroxydecoanate (5HD) or 300 micromol/l alpha-mercaptopropionylglycine (MPG). After isolation of cardiac mitochondria, the respiratory control index (RCI) was calculated from State 3 and State 4 respiration. Both IP and Nic significantly (p <.05) improved postischemic RCI, which was depressed 71% from preischemic values in control hearts. The protective effects of IP and Nic were partially abolished by bracketing with 5HD or MPG. Furthermore, mitochondria from ischemic hearts had significantly (p <.05) less ability to resist swelling on Ca2+ loading, which was improved by both IP and Nic. By use of an immunoblot technique, carbonyl content of multiple bands of mitochondrial proteins was observed to be elevated after 25 min ischemia, and still elevated by the end of 60 min reperfusion. Both IP and Nic attenuated the increased protein oxidation observed at the end of ischemia. The protective effect of IP was almost completely abolished by MPG and partially by 5HD, which also partially abolished the protective effect of Nic. These studies support the conclusion that one mechanism for enhanced postischemic function in the preconditioned heart is improved mitochondrial function as a result of decreased oxidation of mitochondrial proteins.  相似文献   

18.
Reperfusion of the ischemic myocardium leads to a burst of reactive O(2) species (ROS), which is a primary determinant of postischemic myocardial dysfunction. We tested the hypothesis that early O(2) delivery and the cellular redox state modulate the initial myocardial ROS production at reperfusion. Isolated buffer-perfused rat hearts were loaded with the fluorophores dihydrofluorescein or Amplex red to detect intracellular and extracellular ROS formation using surface fluorometry at the left ventricular wall. Hearts were made globally ischemic for 20 min and then reperfused with either 95% or 20% O(2)-saturated perfusate. The same protocol was repeated in hearts loaded with dihydrofluorescein and perfused with either 20 or 5 mM glucose-buffered solution to determine relative changes in NADH and FAD. Myocardial O(2) delivery during the first 5 min of reperfusion was 84.7 +/- 4.2 ml O(2)/min with 20% O(2)-saturated buffer and 354.4 +/- 22.8 ml O(2)/min with 95% O(2) (n = 8/group, P < 0.001). The fluorescein signal (intracellular ROS) was significantly increased in hearts reperfused with 95% O(2) compared with 20% O(2). However, the resorufin signal (extracellular ROS) was significantly increased with 20% O(2) compared with 95% O(2) during reperfusion. Perfusion of hearts with 20 mM glucose reduced the (.)NADH during ischemia (P < 0.001) and the (.)ROS at reperfusion (P < 0.001) compared with 5.5 mM-perfused glucose hearts. In conclusion, initial O(2) delivery to the ischemic myocardium modulates a compartment-specific ROS response at reperfusion such that high O(2) delivery promotes intracellular ROS and low O(2) delivery promotes extracellular ROS. The redox state that develops during ischemia appears to be an important precursor for reperfusion ROS production.  相似文献   

19.
Diabetic heart is suggested to exhibit either increased or decreased resistance to ischemic injury. Ischemic preconditioning suppresses arrhythmias in the normal heart, whereas relatively little is known about its effects in the diseased myocardium. Our objective was to investigate whether development of diabetes mellitus modifies the susceptibility to ischemia-induced arrhythmias and affects preconditioning in the rat heart. Following 1 and 9 weeks of streptozotocin-induced (45 mg/kg, i.v.) diabetes, the hearts were Langendorff-perfused at constant pressure of 70 mm Hg and subjected to test ischemia induced by 30 min occlusion of the left anterior descending (LAD) coronary artery. Preconditioning consisted of one cycle of 5 min ischemia and 10 min reperfusion, prior to test ischemia. Susceptibility to ischemia-induced arrhythmias was lower in 1-week diabetics: only 42 % of diabetic hearts exhibited ventricular tachycardia (VT) and 16 % had short episodes of ventricular fibrillation (VF) as compared to VT 100 % and VF 70 % (including sustained VF 36 %) in the non-diabetics (P<0.05). Development of the disease was associated with an increased incidence of VT (VT 92 %, not significantly different from non-diabetics) and longer total duration of VT and VF at 9-weeks, as compared to 1-week diabetics. Preconditioning effectively suppressed arrhythmias in the normal hearts (VT 33 %, VF 0 %). However, it did not provide any additional antiarrhythmic protection in the acute diabetes. On the other hand, in the preconditioned 9-weeks diabetic hearts, the incidence of arrhythmias tended to decrease (VT 50 %, transient VF 10 %) and their severity was reduced. Diabetic rat hearts are thus less susceptible to ischemia-induced arrhythmias in the acute phase of the disease. Development of diabetes attenuates increased ischemic tolerance, however, diabetic hearts in the chronic phase can benefit more from ischemic preconditioning, due to its persisting influence.  相似文献   

20.
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号