首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Until recently, the high degree of diversity and endemism of the Guayana Highlands was explained within the frame of the refuge theory. Although this hypothesis is unsupported by recent palaeoecological evidence, no new diversification model has been proposed. This paper is a proposal based on the latest palynological findings that indicate a downward biotic migration of c. 1100 m altitude during glacials, and the subsequent interglacial upward shift, in response to colder and warmer climates, respectively. Therefore, during glacials, biotic mixing is expected in the lowlands, thus promoting sympatric speciation, hybridization and polyploidy. At the mountaintops, unknown cold‐adapted taxa and páramo‐like(?) communities are expected to have occurred, and vicariance prevailed. In the interglacials, many taxa have had the opportunity for ascending to the mountains again, allowing genetic interchange among their slopes and summits, while others would have been adapted to lowlands. The interglacial highland communities, where vicariance still predominated, experienced some extinction owing to habitat loss by upland displacement. According to this model, the successive alternation of glacials and interglacials resulted in a net increase of diversity and endemism, favoured by the complex topography and habitat heterogeneity, which allowed high niche diversification. This model has some similarities with the Andean and Amazon modes of diversification, but the special topographical characteristics of the Guayana region made it different in other fundamental aspects. The Guayana Highlands would have acted as a ‘biodiversity pump’ for the surrounding inner and coastal lowlands, due to the repeated speciation and further spreading events, as a response to climate. Several working hypotheses are suggested in relation to the proposed model. The use of coordinated international multiproxy projects combining palaeoecology and genetic analysis of modern taxa is strongly encouraged for exploring these ideas.  相似文献   

2.
South‐East Asia covers four of the world's biodiversity hotspots, showing high species diversity and endemism. Owing to the successive expansion and contraction of distribution and the fragmentation by geographical barriers, the tropical flora greatly diversified in this region during the Tertiary, but the evolutionary tempo and mode of species diversity remain poorly investigated. Paphiopedilum, the largest genus of slipper orchids comprising nearly 100 species, is mainly distributed in South‐East Asia, providing an ideal system for exploring how plant species diversity was shaped in this region. Here, we investigated the evolutionary history of this genus with eight cpDNA regions and four low‐copy nuclear genes. Discordance between gene trees and network analysis indicates that reticulate evolution occurred in the genus. Ancestral area reconstruction suggests that vicariance and long‐distance dispersal together led to its current distribution. Diversification rate variation was detected and strongly correlated with the species diversity in subg. Paphiopedilum (~80 species). The shift of speciation rate in subg. Paphiopedilum was coincident with sea‐level fluctuations in the late Cenozoic, which could have provided ecological opportunities for speciation and created bridges or barriers for gene flow. Moreover, some other factors (e.g. sympatric distribution, incomplete reproductive barriers and clonal propagation) might also be advantageous for the formation and reproduction of hybrid species. In conclusion, our study suggests that the interplay of reticulate evolution and sea‐level fluctuations has promoted the diversification of the genus Paphiopedilum and sheds light into the evolution of Orchidaceae and the historical processes of plant species diversification in South‐East Asia.  相似文献   

3.
Aim To reconstruct the biogeographical history of New World emballonurid bats (tribe Diclidurini). Although bats are the second most species‐rich order of mammals, they have not contributed substantially to our understanding of the historical biogeography of mammals in the Neotropics because of a poor fossil record. In addition, being the only group of mammals that fly, bats typically have large distributions with relatively few species endemic to restricted areas that are amenable to vicariant biogeographical approaches. Location Central and South America. Methods Phylogenetic analysis for comparing trees (PACT) is a new algorithm that incorporates all spatial information from taxon area cladograms into a general area cladogram. There were nine biogeographical areas identified in Central and South America for New World emballonurid bats. Molecular dating was used to incorporate the temporal aspect of historical biogeography. This method was compared with dispersal–vicariance analysis (DIVA), which assumes vicariance as the default mode of speciation. Results Of the 45 speciation events in a fully resolved phylogeny, eight that were hypothesized by DIVA as vicariance were considered by PACT as two peripheral isolations and six within‐area events. DIVA was less parsimonious because it required six more post‐speciation dispersal events in addition to the 73 hypothesized by PACT. DIVA reconstructed a widely distributed ancestor, suggesting that most dispersal events occurred earlier, whereas the ancestral area for PACT based on character optimization was the Northern Amazon, suggesting that dispersal events were more recent phenomena. Main conclusions The general area cladogram from PACT indicated that within‐area events, and not vicariance, provide the major mode of speciation for New World emballonurid bats. There was no biological evidence supporting or rejecting sympatric speciation in New World emballonurid bats. However, the geological history, combined with fluctuations in temperature and sea level, suggested within‐area speciation in a changing and heterogeneous environment in the Northern Amazon during the Miocene. This scenario is similar to the taxon‐pulse hypothesis of biotic diversification, which posits repeated episodes of range expansions and contractions from a stable core area such as the Guiana Shield within the Northern Amazon.  相似文献   

4.
PACT: an efficient and powerful algorithm for generating area cladograms   总被引:2,自引:1,他引:1  
Aim To introduce and describe the functioning of a new algorithm, phylogenetic analysis for comparing trees (PACT), for generating area cladograms that provide accurate representation of information contained in taxon–area cladograms. Methods PACT operates in the following steps. Convert all phylogenies to taxon–area cladograms. Convert all taxon–area cladograms to Venn diagrams. Choose any taxon–area cladogram from the set of taxon–area cladograms to be analysed and determine its elements. This will be the template area cladogram. Select a second taxon–area cladogram. Determine its elements. Document which elements in the second tree occur in the template tree (denoted by ‘Y’) and which do not (denoted by ‘N’). Each ‘Y’ indicates a match with previous pattern and these are combined. Each ‘N’ is a new element and is attached to the template area cladogram at the node where it is linked with a Y. This requires two rules: (1) ‘Y + Y = Y’ (combine common elements) as long as they are connected at the same node; and (2) ‘Y + N = YN’ (add novel elements to the template area cladogram at the node where they first appear). Once the novel elements in the second taxon–area cladogram have been added to the template area cladogram, see if any of them can be further combined. This requires three additional rules: (1) ‘Y(Y? = Y(Y?’ (do not combine Y's if they are attached at different nodes on the template area cladogram); (2) ‘Y + YN = YN’ (Y is part of group YN); and (3) ‘YN + YN = YNN’ (Y is the same for each, but each N is different). Repeat for all available taxon–area cladograms. Results Three exemplars demonstrate that PACT provides the most accurate area cladograms for vicariance‐driven biotic diversification, dispersal‐driven biotic diversification and taxon pulse‐driven biotic diversification. PACT can also be used as an a priori method of biogeographical analysis. Main conclusions PACT embodies all the strong points and none of the weaknesses of previously proposed methods of historical biogeography. It is most useful as an a posteriori method, but it is also superior to all previous a priori methods because it does not specify costs, or weights or probabilities, or likelihoods of particular biogeographical processes a priori and is thus sensitive to clade‐specific historical contingencies.  相似文献   

5.
Aim To explore global patterns of riverine fish endemism by applying an island biogeography framework to river drainage basins and highlight evolutionary mechanisms producing two kinds of endemism: neo‐endemism, arising from within‐drainage cladogenetic speciation, and palaeo‐endemism, arising from species range contraction or anagenetic speciation. Location World‐wide. Methods We use a uniquely comprehensive data set of riverine fish species distributions to map global fish endemism patterns. We then use the relationships between (1) total species richness and proportions of endemic species and (2) total species richness and a measure of in situ (i.e. within‐drainage basin) probability of speciation by cladogenesis, to identify the two distinct forms of endemism. After separating drainage basins into two different sets according to dominance of one of these two forms, we apply a model averaging procedure to highlight, for both datasets, the environmental and historical variables that better explain endemism patterns. We finally analyse the effect of biotic components related to dispersal ability on the percentages of both kinds of endemism among lineages. Results Our results indicate that the two types of endemism are distributed differently across space and taxonomic lineages: (1) neo‐endemism, positively related to the overall richness of the drainage basin, is essentially linked to in situ cladogenetic speciation and is positively related to drainage basin area, negatively related to climate variability since glacial periods and negatively related to all proxies of dispersal ability; and (2) palaeo‐endemism, not directly contributing to drainage basin richness, is a pure process of extinction through range contraction and/or isolation through time and is mostly related to geographic isolation, glacial history and positively related to marine‐derived origin of families. Main conclusions The non‐random spatial and taxonomic distribution of neo‐endemism and palaeo‐endemism sharply reflects the role of evolutionary processes and provides a way to identify areas of high conservation interest based on their high present and future diversification potential.  相似文献   

6.
Endemic species and species with small ranges are ecologically and evolutionarily distinct and are vulnerable to extinction. Determining which abiotic and biotic factors structure patterns of endemism on continents can advance our understanding of global biogeographic processes, but spatial patterns of mammalian endemism have not yet been effectively predicted and reconstructed. Using novel null model techniques, we reconstruct trends in mammalian endemism and describe the isolated and combined effects of physiographic, ecological, and evolutionary factors on endemism. We calculated weighted endemism for global continental ecoregions and compared the spatial distribution of endemism to niche-based, geographic null models of endemism. These null models distribute species randomly across continents, simulating their range sizes from their degree of climatic specialization. They isolate the effects of physiography (topography and climate) and species richness on endemism. We then ran linear and structural models to determine how topography and historical climate stability influence endemism. The highest rates of mammalian endemism were found in topographically rough, climatically stable ecoregions with many species. The null model that isolated physiography did not closely approximate the observed distribution of endemism (r2 = .09), whereas the null model that incorporated both physiography and species richness did (r2 = .59). The linear models demonstrate that topography and climatic stability both influenced endemism values, but that average climatic niche breadth was not highly correlated with endemism. Climate stability and topography both influence weighted endemism in mammals, but the spatial distribution of mammalian endemism is driven by a combination of physiography and species richness. Despite its relationship to individual range size, average climate niche breadth has only a weak influence on endemism. The results highlight the importance of historical biogeographic processes (e.g. centers of speciation) and geography in driving endemism patterns, and disentangle the mechanisms structuring species ranges worldwide.  相似文献   

7.
Aim To investigate the effects of Pleistocene climatic variations on the diversification rate of the subgenus Calathus (Coleoptera: Carabidae), and to estimate the role of vicariance and dispersal for explaining current distributional patterns. Location Western Palaearctic Region, particularly the Mediterranean Basin. Methods Fragments of the mitochondrial cox1–cox2 and the nuclear 28S and EF1α genes were analysed by Bayesian inference. Lineage divergence times were estimated using a Bayesian relaxed molecular clock. Three diversification rate analyses were conducted, namely gamma (γ)‐statistic, birth–death likelihood (BDL) test and survival analyses, in order to test departures from a constant rate model of diversification. A Bayesian approach to dispersal–vicariance analysis was developed to reconstruct the most probable ancestral area of subgenus Calathus and subsequent events of dispersal and colonization. Results A constant rate of speciation events from the late Miocene onwards was found for the subgenus Calathus, whereas recent Pleistocene climatic oscillations played an important role only in shaping intraspecific diversity. Overall diversification patterns for the subgenus are best explained by at least four westward dispersal events from the eastern Mediterranean Basin. Three distinct phylogroups were found for the widely distributed Calathus fuscipes. Incongruence between mitochondrial and nuclear loci was found for a number of species. Main conclusions Diversification analyses suggest either a constant rate of diversification (BDL analysis) or a decrease in diversification rates for the subgenus (survival or γ‐statistics analyses), but not an increase related to the effects of glaciation cycles. Diversification patterns in the subgenus Calathus agree with predictions of the taxon pulse model. From the middle Miocene onwards the Anatolian Peninsula was possibly the main centre of diversification, with successive dispersal events towards the western Mediterranean Basin. Range expansion and secondary contact zones are postulated between members of different phylogroups in C. fuscipes.  相似文献   

8.
Aim To compare the evolutionary and ecological patterns of two extensively studied island biotas with differing geological histories (the Hawaiian Islands and the Greater Antilles). We evaluated the results from PACT (phylogenetic analysis for comparing trees), an innovative approach that has been proposed to reveal general patterns of biotic expansion (between regions) and in situ (within a region) diversification, as well as species–area relationships (SAR) and the taxon pulse dynamic. Location The Hawaiian Islands and Greater Antilles. Methods We used the PACT algorithm to construct general area cladograms and identified biotic expansion and in situ nodes. We analysed the power‐law SAR and relative contribution of biotic expansion and in situ diversification events using power‐law and linear regression analyses. Results Both biotic expansion and in situ nodes were prevalent throughout the PACT general area cladograms (Greater Antilles, 55.9% biotic expansion, 44.1% in situ; Hawaiian Islands, 40.6% biotic expansion, 59.4% in situ). Of the biotic expansion events, both forward and backward events occurred in both regions (Greater Antilles, 85.1% forward, 14.9% backward; Hawaiian Islands, 65% forward, 35% backward). Additionally, there is a power‐law SAR for the Greater Antilles but not for the Hawaiian Islands. However, exclusion of Hawai'i (the youngest, largest Hawaiian Island) produced a power‐law SAR for the Hawaiian Islands. Main conclusions The prevalence of in situ events as well as forward and backward biotic expansion events reveals that both Hawaiian and Greater Antillean biotas have evolved through alternating episodes of biotic expansion and in situ diversification. These patterns are characteristic of the taxon pulse dynamic, for which few data have previously been recorded on islands. Additionally, our analysis revealed that historical influences on the power‐law SARs are pronounced in both assemblages: old, small islands are relatively species rich and young, large islands are relatively species poor. Thus, our PACT results are consistent with hypotheses of geological influence on the evolution of island biotas and also provide greater insight into the role of the taxon pulse dynamic in the formation of island equilibria.  相似文献   

9.
The ecology, abundance and diversity of galatheoid squat lobsters make them an ideal group to study deep-sea diversification processes. Here, we reconstructed the evolutionary and biogeographic history of Leiogalathea, a genus of circum-tropical deep-sea squat lobsters, in order to compare patterns and processes that have affected shallow-water and deep-sea squat lobster species. We first built a multilocus phylogeny and a calibrated species tree with a relaxed clock using StarBEAST2 to reconstruct evolutionary relationships and divergence times among Leiogalathea species. We used BioGeoBEARS and a DEC model, implemented in RevBayes, to reconstruct ancestral distribution ranges and the biogeographic history of the genus. Our results showed that Leiogalathea is monophyletic and comprises four main lineages; morphological homogeneity is common within and between clades, except in one; the reconstructed ancestral range of the genus is in the Atlantic and Indian oceans (Tethys). They also revealed the divergence of the Atlantic species around 25 million years ago (Ma), intense cladogenesis 15–25 Ma and low levels of speciation over the last 5 million years (Myr). The four Leiogalathea lineages showed similar patterns of speciation: allopatric speciation followed by range expansion and subsequent stasis. Leiogalathea started diversifying during the Oligocene, likely in the Tethyan. The Atlantic lineage then split from its Indo-Pacific sister group due to vicariance driven by closure of the Tethys Seaway. The Atlantic lineage is less speciose compared with the Indo-Pacific lineages, with the Tropical Southwestern Pacific being the current centre of diversity. Leiogalathea diversification coincided with cladogenetic peaks in shallow-water genera, indicating that historical biogeographic events similarly shaped the diversification and distribution of both deep-sea and shallow-water squat lobsters.  相似文献   

10.
Aim To test predictions of the vicariance model, to define basic biogeographical units for Cerrado squamates, and to discuss previous biogeographical hypotheses. Location Cerrado; South American savannas south of the Amazon, extending across central Brazil, with marginal areas in Bolivia and Paraguay and isolated relictual enclaves in adjacent regions. Methods We compiled species occurrence records via field sampling and revision of museum specimens and taxonomic literature. All species were mapped according to georeferenced locality records, and classified as (1) endemic or non‐endemic, (2) typical of plateaus or depressions, and (3) typical of open or forested habitats. We tested predictions of the vicariance model using biotic element analysis, searching for non‐random clusters of species ranges. Spatial congruence of biotic elements was compared with putative areas of endemism revealed by sympatric restricted‐range species. Effects of topographical and vegetational mosaics on distribution patterns were studied according to species composition in biotic elements and areas of endemism. Results We recorded 267 Cerrado squamates, of which 103 (39%) are endemics, including 20 amphisbaenians (61% endemism), 32 lizards (42%) and 51 snakes (32%). Distribution patterns corroborated predictions of the vicariance model, revealing groups of species with significantly clustered ranges. An analysis of endemic species recovered seven biotic elements, corroborating results including non‐endemics. Sympatric restricted‐range taxa delimited 10 putative areas of endemism, largely coincident with core areas of biotic elements detected with endemic taxa. Distribution patterns were associated with major topographical and vegetational divisions of the Cerrado. Endemism prevailed in open, elevated plateaus, whereas faunal interchange, mostly associated with forest habitats, was more common in peripheral depressions. Main conclusions Our results indicate that vicariant speciation has strongly shaped Cerrado squamate diversity, in contrast to earlier studies emphasizing faunal interchange and low endemism in the Cerrado vertebrate fauna. Levels of squamate endemism are higher than in any other Cerrado vertebrate group. The high number of recovered endemics revealed previously undetected areas of evolutionary relevance, indicating that biogeographical patterns in the Cerrado were poorly represented in previous analyses. Although still largely undocumented, effects of vicariant speciation may be prevalent in a large fraction of Cerrado and Neotropical biodiversity.  相似文献   

11.
We studied the intraspecific evolutionary history of the South American Atlantic forest endemic Xiphorhynchusfuscus (Aves: Dendrocolaptidae) to address questions such as: Was the diversification of this bird's populations associated to areas of avian endemism? Which models of speciation (i.e., refuges, river as barriers or geotectonism) explain the diversification within X. fuscus? Does the genetic data support subspecies as independent evolutionary units (species)? We used mitochondrial (n=34) and nuclear (n=68) DNA sequences of X. fuscus to study temporal and spatial relationships within and between populations. We described four main monophyletic lineages that diverged during the Pleistocene. The subspecies taxonomy did not match all the evolutionary lineages; subspecies atlanticus was the only one that represented a monophyletic and isolated lineage. The distribution of these lineages coincided with some areas of endemism for passerines, suggesting that those areas could be regions of biotic differentiation. The ancestor of X. fuscus diverged approximately 3 million years ago from Amazonian taxa and the phylogeographic pattern suggested that X. fuscus radiated from northeastern Brazil. Neither the riverine nor the geotectonic vicariance models are supported as the primary cause for diversification of geographic lineages, but rainforest contractions and expansions (ecological vicariance) can explain most of the spatial divergence observed in this species. Finally, analyses of gene flow and divergence time estimates suggest that the endangered subspecies atlanticus (from northeastern Brazil) can be considered a full species under the general lineage species concept.  相似文献   

12.
Montane areas host high levels of diversity and endemism, and these features are tied to habitat stratification along an elevational gradient. As such, montane areas are often thought of as model systems in which sympatric speciation can occur. To test this idea, we selected Phoenicurus redstarts, an avian genus with an extensive distribution across Eurasia, as well as Northwest Africa; nine of the 14 species in the genus have distributions which include the Himalayas. We used sequences of the mtDNA ND2 and cytochrome-b genes and intron 9 of the Z chromosome specific ACO1 gene to reconstruct a phylogeny of the genus. The resulting trees were used to reconstruct a biogeographic history of Phoenicurus, and to date diversification events. We also analysed the relationship between node age and sympatry to determine the geographic mode of speciation in the genus. Our data suggest a very late Miocene, Himalayan origin for Phoenicurus. Diversification and colonization of other parts of Eurasia, as well as Northwest Africa, continued through the Pleistocene, with a rapid pulse of speciation in the late Pliocene. Allopatric speciation was the dominant mode of speciation in Phoenicurus, despite extensive distributional overlaps in the Himalayas where ecological conditions are amenable to speciation in sympatry. Our results, along with several other studies, suggest an emerging pattern where the Himalayas served as a source area for montane specialist avian lineages that subsequently colonized other Palaearctic regions.  相似文献   

13.
This paper documents congruence in geographical patterns of speciation for four clades of birds having taxa endemic to the same areas within the Neotropics. Two genera, Pionopsitta parrots and Selenidera toucans, corroborate a well known biogeographic disjunction in which taxa endemic to southern Central America and the Chocó region of northwestern South America are the sister-group to a radiation within the Amazon basin. These two genera, along with two lineages within the toucan genus Pteroglossus, also document a pattern of historical interrelationships for four well known areas of endemism within Amazonia: Guyanan + (Belém-Pará + (Inambari + Napo)). These generalized historical patterns are interpreted to have arisen via fragmentation (vicariance) of a widespread ancestral biota. A review of the paleogeographic evidence suggests that these vicariance events could have originated as a result of several different mechanisms operating at various times during the Cenozoic. The inference that diversification of the Neotropical biota is primarily the result of the most recent of these possible vicariance events, namely isolation within Quaternary forest refugia, is unwarranted, given present data. These patterns of historical congruence are also interpreted as direct evidence against the hypothesis that diversification of the forest biota was a consequence of parapatric differentiation along recently established ecological gradients.  相似文献   

14.
Determining how environmental conditions contribute to divergence among populations and drive speciation is fundamental to resolving mechanisms and understanding outcomes in evolutionary biology. Postglacial freshwater fish species in the Northern Hemisphere are ideal biological systems to explore the effects of environment on diversification in morphology, ecology, and genetics (ecomorph divergences) within lakes. To date, various environmental factors have been implicated in the presence of multiple ecomorphs within particular lakes or regions. However, concerted evidence for generalizable patterns in environmental variables associated with speciation across geographical regions and across species and genera has been lacking. Here, we aimed to identify key biotic and abiotic factors associated with ecological divergence of postglacial freshwater fish species into multiple sympatric ecomorphs, focusing on species in the well-studied, widespread, and co-distributed genera Gasterosteus, Salvelinus, and Coregonus (stickleback, charr, and whitefish, respectively). We found that the presence of multiple sympatric ecomorphs tended to be associated with increasing lake surface area, maximum depth, and nutrient availability. In addition, predation, competition, and prey availability were suggested to play a role in divergence into multiple ecomorphs, but the effects of biotic factors require further study. Although we identified several environmental factors correlated with the presence of multiple ecomorphs, there were substantial data gaps across species and regions. An improved understanding of these systems may provide insight into both generalizable environmental factors involved in speciation in other systems, and potential ecological and evolutionary responses of species complexes when these variables are altered by environmental change.  相似文献   

15.
In the Andes, humid‐forest organisms frequently exhibit pronounced genetic structure and geographic variation in phenotype, often coincident with physical barriers to dispersal. However, phylogenetic relationships of clades have often been difficult to resolve due to short internodes. Consequently, even in taxa with well‐defined genetic structure, the temporal and geographic sequences of dispersal and vicariance events that led to this differentiation have remained opaque, hindering efforts to test the association between diversification and earth history and to understand the assembly of species‐rich communities on Andean slopes. Here, we use mitochondrial DNA and thousands of short‐read sequences generated with genotyping by sequencing (GBS) to examine the geographic history of speciation in a lineage of passerine birds found in the humid forest of the Andes, the ‘bay‐backed’ antpitta complex (Grallaria hypoleuca s. l). Mitochondrial DNA genealogies documented genetic structure among clade but were poorly resolved at nodes relevant for biogeographic inference. By contrast, relationships inferred from GBS loci were highly resolved and suggested a biogeographic history in which the ancestor originated in the northern Andes and dispersed south. Our results are consistent with a scenario of vicariant speciation wherein the range of a widespread ancestor was fragmented as a result of geologic or climatic change, rather than a stepping‐stone series of dispersal events across pre‐existing barriers. However, our study also highlights challenges of distinguishing dispersal‐mediated speciation from static vicariance. Our results further demonstrate the substantial evolutionary timescale over which the diverse biota of the Andes was assembled.  相似文献   

16.
Aim The Mediterranean region is a species‐rich area with a complex geographical history. Geographical barriers have been removed and restored due to sea level changes and local climatic change. Such barriers have been proposed as a plausible mechanism driving the high levels of speciation and endemism in the Mediterranean basin. This raises the fundamental question: is allopatric isolation the mechanism by which speciation occurs? This study explores the potential driving influence of palaeo‐geographical events on the speciation of Cyclamen (Myrsinaceae), a group with most species endemic to the Mediterranean region. Cyclamen species have been shown experimentally to have few genetic barriers to hybridization. Location The Mediterranean region, including northern Africa, extending eastwards to the Black Sea coast. Methods A generic level molecular phylogeny of Myrsinaceae and Primulaceae is constructed, using Bayesian approximation, to produce a secondary age estimate for the stem lineage of Cyclamen. This estimate is used to calibrate temporally an infrageneric phylogeny of Cyclamen, built with nrDNA ITS, cpDNA trnL‐F and cpDNA rps16 sequences. A biogeographical analysis of Cyclamen is performed using dispersal–vicariance analysis. Results The emergence of the Cyclamen stem lineage is estimated at 30.1–29.2 Ma, and the crown divergence at 12.9–12.2 Ma. The average age of Cyclamen species is 3.7 Myr. Every pair of sister species have mutually exclusive, allopatric distributions relative to each other. This pattern appears typical of divergence events throughout the evolutionary history of the genus. Main conclusions Geographical barriers, such as the varying levels of the Mediterranean Sea, are the most plausible explanation for speciation events throughout the phylogenetic history of Cyclamen. The genus demonstrates distributional patterns congruent with the temporally reticulate palaeogeography of the Mediterranean region.  相似文献   

17.
Aim We investigate spatial and temporal patterns of diversification within the Neotropical avifauna using the phylogenetic history of parrots traditionally belonging to the genus Pionopsitta Bonaparte 1854. This genus has long been of interest for those studying Neotropical biogeography and diversity, as it encompasses species that occur in most Neotropical forest areas of endemism. Location The Neotropical lowland forests in South and Central America. Methods Phylogenetic relationships were investigated for all species of the genus Pionopsitta and five other short‐tailed parrot genera using complete sequences of the mitochondrial genes cyt b and ND2 as well as 26 plumage characters. The resulting phylogeny was used to test the monophyly of the genus, investigate species limits, and as a framework for reconstructing their historical biogeography and patterns of diversification. Results We found that the genus Pionopsitta, as previously defined, is not monophyletic and thus the Chocó, Central American and Amazonian species will now have to be placed in the genus Gypopsitta. The molecular and morphological phylogenies are largely congruent, but disagree on the position of one of the Amazon basin taxa. Using molecular sequence data, we estimate that species within Gypopsitta diversified between 8.7 and 0.6 Ma, with the main divergences occurring between 3.3 and 6.4 Ma. These temporal results are compared to other taxa showing similar vicariance patterns. Main conclusions The results suggest that diversification in Gypopsitta was influenced mainly by geotectonic events, marine transgressions and river dynamics, whereas Quaternary glacial cycles of forest change seem to have played a minor role in the origination of the currently recognized species.  相似文献   

18.
Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host–symbiont compatibility in speciation of these vent-restricted snails.  相似文献   

19.
Aim To investigate the importance of vicariance in shaping the north‐west European land snail fauna. Location North‐west Europe. Methods We tested whether there is a non‐random congruence, i.e. a clustering of species ranges, using a Monte Carlo procedure with a null model that generates range data sets such that their range size distribution, the species richness distribution of the geographic cells and the spatial autocorrelation of the occurrences of a taxon approach the parameters in the real data set. Biotic elements, groups of species with similar ranges, were delimited with Model based Gaussian clustering. The prediction that closely related species belong to different biotic elements, has been tested with a chi‐square test. Results The distribution areas of the north‐west European land snail species are significantly clustered as predicted by the vicariance model. One widespread and seven regional biotic elements were identified. Contrary to the predictions of the vicariance model, closely related north‐west European land snail species belong significantly more often to the same biotic element than should be expected by chance. Main conclusions The clustering of closely related north‐west European land snail species within the same biotic element indicates that speciation modes other than vicariance were frequent or that the imprint of vicariance on the ranges was obscured by extensive post‐speciational dispersal. Extensive dispersal may have been caused by Pleistocene climatic fluctuations. The core areas of the regionally restricted biotic elements might indicate the positions of glacial refugia of land snails.  相似文献   

20.

Background

The major impact of Plio-Pleistocene climatic oscillations on the current genetic structure of many species is widely recognised but their importance in driving speciation remains a matter of controversies. In addition, since most studies focused on Europe and North America, the influence of many other biogeographic barriers such as the Sahara remains poorly understood. In this paper, climate-driven diversification was investigated by using a comparative phylogeographic approach in combination with phenotypic data in two avian species groups distributed on both sides of the deserts belt of Africa and Asia. In particular, we tested whether: 1) vicariance diversification events are concomitant with past climatic events; and 2) current ecological factors (using climate and competition as proxies) contribute to phenotypic divergence between allopatric populations.

Results

Mitochondrial and nuclear sequence data indicated that the crested and Thekla lark species groups diverged in the early Pliocene and that subsequent speciation events were congruent with major late Pliocene and Pleistocene climatic events. In particular, steep increase in aridity in Africa near 2.8 and 1.7 million years ago were coincident with two north-south vicariance speciation events mediated by the Sahara. Subsequent glacial cycles of the last million years seem to have shaped patterns of genetic variation within the two widespread species (G. cristata and G. theklae). The Sahara appears to have allowed dispersal from the tropical areas during climatic optima but to have isolated populations north and south of it during more arid phases. Phenotypic variation did not correlate with the history of populations, but was strongly influenced by current ecological conditions. In particular, our results suggested that (i) desert-adapted plumage evolved at least three times and (ii) variation in body size was mainly driven by interspecific competition, but the response to competition was stronger in more arid areas.

Conclusion

Climatic fluctuations of the Plio-Pleistocene strongly impacted diversification patterns in the Galerida larks. Firstly, we found that cladogenesis coincides with major climatic changes, and the Sahara appears to have played a key role in driving speciation events. Secondly, we found that morphology and plumage were strongly determined by ecological factors (interspecific competition, climate) following vicariance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号