首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从水朝阳旋覆花(Inula helianthus-aquatica)地上部分分离得到24个化合物,经波谱数据分析分别鉴定为aromaticin(1),8-epi-helenalin(2),bigelovin(3),2,3-dihydroaromaticin(4),carpesiolin(5),ergolide(6),inuchinenolide C(7),6α-acetoxy-isoinuviscolide(8),8-epi-inuviscolide(9),inuchinenolide B(10),tomentosin(11),11α,13-dihydrotomentosin(12),inuchinenolide A(13),4H-tomentosin(14),11β,13-dihydro-4H-tomentosin(15),11-epi-sundiversifolide(16),sundiversifolide(17),8,9,10-三羟基百里香酚(18),10-羟基-8,9-双氧亚异丙基百里香酚(19),8,10-二羟基-9-异丁酰百里香酚(20),8-羟基-9,10-二异丁酰百里香酚(21),8-羟基-9-异丁酰-10-(2-甲基丁酰)百里香酚(22),8,9-环氧-9,10-二异丁酰百里香酚(23)和8,9-环氧-3-异丁酰-10-(2-甲基丁酰)百里香酚(24)。除了化合物1~6外,其他化合物均为首次从该植物中分离得到。  相似文献   

2.
Beauveria bassiana KCH 1065, as was recently demonstrated, is unusual amongst fungal biocatalysts in that it converts C19 3-oxo-4-ene and 3β-hydroxy-5-ene as well as 3β-hydroxy-5α-saturated steroids to 11α-hydroxy ring-D lactones. The Baeyer–Villiger monooxygenase (BVMO) of this strain is distinguished from other enzymes catalyzing BVO of steroidal ketones by the fact that it oxidizes solely substrates with 11α-hydroxyl group. The current study using a series of 5α-saturated steroids (androsterone, 3α-androstanediol and androstanedione) has highlighted that a small change of the steroid structure can result in significant differences of the metabolic fate. It was found that the 3α-stereochemistry of hydroxyl group restricted “normal” binding orientation of the substrate within 11α-hydroxylase and, as a result, androsterone and 3α-androstanediol were converted into a mixture of 7β-, 11α- and 7α-hydroxy derivatives. Hydroxylation of androstanedione occurred only at the 11α-position, indicating that the 3-oxo group limits the alternative binding orientation of the substrate within the hydroxylase. Only androstanedione and 3α-androstanediol were metabolized to hydroxylactones. The study uniquely demonstrated preference for oxidation of equatorial (11α-, 7β-) hydroxyketones by BVMO from B. bassiana. The time course experiments suggested that the activity of 17β-HSD is a factor determining the amount of produced ring-D lactones. The obtained 11α-hydroxylactones underwent further transformations (oxy-red reactions) at C-3. During conversion of androstanedione, a minor dehydrogenation pathway was observed with generation of 11α,17β-dihydroxy-5α-androst-1-en-3-one. The introduction of C1C2 double bond has been recorded in B. bassiana for the first time.  相似文献   

3.
The sex steroid binding protein (SBP) which binds androgens circulating in the blood of man has been examined to determine the structural requirements for high affinity binding. SBP was purified partially and the ability of each of more than 150 steroids to compete with [3H]dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) for binding to SBP was assessed.Binding was enhanced by reduction of the Δ4 double bond to 5α-dihydro, addition of a methyl group at C-4 and in one case unsaturation at C-14, 15. Affinity was always reduced by modifications of the C-17β hydroxy. Binding was also severely decreased by deletion of the keto moiety at C-3; however, relatively high affinity was retained by an alcohol or an unsubstituted pyrazole group at C-3. Certain alpha surface substitutions such as 17α-ethinyl had limited effects on binding; whereas, other modifications such as 7α-methyl or 17α-methyl caused significant reduction in binding. Most modifications at C-2, 6, 9 or 11 also impaired affinity, and the 5β steroids had reduced affinity.  相似文献   

4.
In this paper we focus on the course of 7-hydroxylation of DHEA, androstenediol, epiandrosterone, and 5α-androstan-3,17-dione by Absidia coerulea AM93. Apart from that, we present a tentative analysis of the hydroxylation of steroids in A. coerulea AM93. DHEA and androstenediol were transformed to the mixture of allyl 7-hydroxy derivatives, while EpiA and 5α-androstan-3,17-dione were converted mainly to 7α- and 7β-alcohols accompanied by 9α- and 11α-hydroxy derivatives. On the basis of (i) time course analysis of hydroxylation of the abovementioned substrates, (ii) biotransformation with resting cells at different pH, (iii) enzyme inhibition analysis together with (iv) geometrical relationship between the C–H bond of the substrate undergoing hydroxylation and the cofactor-bound activated oxygen atom, it is postulated that the same enzyme can catalyze the oxidation of C7-Hα as well as C7-Hβ bonds in 5-ene and 5α-dihydro C19-steroids. Correlations observed between the structure of the substrate and the regioselectivity of hydroxylation suggest that 7β-hydroxylation may occur in the normal binding enzyme-substrate complex, while 7α-hydroxylation—in the reverse inverted binding complex.  相似文献   

5.
H Sekihara  N Osawa 《Steroids》1974,23(2):245-258
A simplified method for evaluating serum 11-deoxy-17-ketosteroids (11-deoxy-17-KS) equivalent to dehydroepiandrosterone sulfate (DHEAS) has been developed without solvolysis and chromatography. 5μl of serum or plasma was added to 1 ml of ethanol, mixed, and centrifuged. 10 or 20 μ1 of the supernatant was evaporated to dryness and incubated with anti-11-deoxy-17-KS antiserum obtained by immunizing a rabbit with DHEA-3·O·CO-BSA which was prepared from DHEA-3·O·COC1 and containing DHEAS-7α3H, pepsin-treated human immune serum globulin and bovine serum albumin. Ammonium sulfate was used to separate free from bound DHEAS-7α3H. The accuracy, precision and sensitivity were satisfactory. The blank values could not be differentiated from zero. As the antiserum reacted not only on DHEAS but also on androsterone sulfate and etiocholanolone sulfate, serum 11-deoxy-17KS obtained by the radioimmunoassay expressed nearly the sum of 100% of DHEAS, 45% of androsterone sulfate and 35% of etiocholanolone sulfate in the serum. A good correlation was found between serum 11-deoxy-17-KS and DHEAS obtained by the radioimmunoassay described in a preveous paper (1). The present radioimmunoassay is the simplest method for the evaluation of the concentrations of C19 steroids in the serum.  相似文献   

6.
1. The isolation and partial purification of 11beta-hydroxy steroid dehydrogenase from rat and guinea-pig liver microsomes has been achieved by conventional methods. 2. The efficiency of different 11-oxygenated steroids as substrates has been examined. The relative efficiencies confirm in the main the stereochemical theory of the enzyme-coenzyme-substrate complex that was proposed earlier on the basis of studies in vivo. Delta(4)-3-Ketones and 5alpha-hydrogen steroids are readily metabolized by the enzyme. 5beta-Hydrogen steroids and Delta(4)-3-ketones with certain large alpha-substituents are metabolized to a limited extent or not at all. Halogen substitution in the 9alpha-position enhances the rate of reduction of 11-ketones but blocks the oxidation of the related 11beta-ols. 3. 9alpha-Fluorocortisol is a competitive inhibitor of the oxidation of cortisol, but 9alpha-fluorocortisone is reduced at five to ten times the initial velocity of cortisone. 4. 11beta-Hydroxy steroid dehydrogenase activity has been found in liver microsomes of rat, guinea pig, rabbit and calf. 5. Relative substrate efficiencies and K(m) values are similar in whole (debris-free) homogenates, washed microsomes and acetone-dried powders of washed microsomes. 6. A variety of conditions have been examined for the observation of 11beta-hydroxy steroid dehydrogenase activity. NADP(H) is an efficient and NAD(H) a very poor coenzyme for the reaction.  相似文献   

7.
F Ungar  R Gunville  R W Seabloom 《Steroids》1973,22(4):503-514
No 11β-hydroxysteroids were detected after 30 minutes incubations of progesterone-4-14C and pregnenolone-7α-3H with adrenals of Microtus pennsylvanicus. 11-Dehydrocorticosterone (Compd. A) was isolated as the major product and its identity confirmed by crystallization to constant specific activity. A tetrahydro derivative, 3α, 21-dihydroxy-5β-pregnane-11, 20-dione and an 18-hydroxy derivative, 18, 21-dihydroxy-4-pregnene-3,11, 20-trione were tentatively identified based-on Chromatographic behavior. The same products were observed with male adrenal and NADPH and with female adrenal using a NADPH generating system. Since the plasma manifested the typical fluorescence characteristics of corticosterone, the in vitro production of 11-keto steroids is considered to be the result of unusually high activity of the 11β-hydroxysteroid dehydrogenase in the Microtus adrenal.  相似文献   

8.
A series of thirty two 6-hydroxylated steroids were synthesized by selective reduction of the 4-5 double bond, the 3-oxo group, and/or the 20-oxo group of 6 alpha- and 6 beta-hydroxyDOC. The different reactions leading to the production of specific isomers are discussed. The gas chromatographic and spectrometric characteristics of the methoxime-trimethylsilyl (MO-TMS) or trimethylsilyl (TMS) derivatives of the isomers obtained are given. The gas chromatographic separation of the syn- and anti-isomers of the methoxime in position 3 was found to be characteristic of the configuration of the hydroxyl in position 6. The difference between methylene unit values of syn- and anti- isomers is much larger for the 6 alpha-series than for the 6 beta-series. The mass spectral analysis showed that many ions are specific of the MO-TMS derivatives of steroids with 3,6-dihydroxy-4-ene or 3-oxo-6-hydroxy-4-ene structure. In the case of steroids with a saturated ring A no significant ions characteristic of the presence of a 6-trimethylsilyloxy substituent were found. This work provides previously unavailable reference data on 6-hydroxylated steroids which should facilitate the study of corticosteroid metabolism.  相似文献   

9.
A simple and reliable method for synthesizing four isomers of parinaric acid from alpha-linolenic acid (ALA) in high yields is described. The methylene-interrupted, cis triene system (1,4,7-octatriene) of ALA and common to other naturally occurring polyunsaturated fatty acids was transformed to a conjugated tetraene system (1,3,5,7-octatetraene). The synthesis involves bromination of ALA using 0.l M Br(2) in a saturated solution of NaBr in methanol, esterification of the fatty acid dibromides, double dehydrobromination by 1,8-diazabicyclo[5.4.0]undec-7-ene and saponification of the conjugated esters to a mixture of free conjugated acids. Addition of one molecule of bromine to the 12,13-double bond of ALA and subsequent dehydrobromination produces alpha-parinaric acid (9Z,11E,13E,15Z-octadecatetraenoic acid); addition of Br(2) to the 9,10-double bond or 15,16-double bond and then dehydrobromination and rearrangement yields 9E,11E,13E,15Z-octadecatetraenoic or 9E,11E,13E,15Z-octadecatetraenoic acids, respectively. The mixture of parinaric acid isomers is obtained in 65% yield, and the isomers can be purified by preparative HPLC; alternatively, the isomers can be converted by base catalyzed cis-trans isomerization (or by treatment with I(2)) to exclusively beta-parinaric acid (9E,11E,13E,15E-octadecatetraenoic acid). The various parinaric acid isomers were characterized by (1)H NMR, (13)C NMR, UV, GLC, HPLC and mass spectrometry.  相似文献   

10.
Antibodies to progesterone (P) and to 17-hydroxyprogesterone (17-OHP) were raised by immunization of rabbits with progesterone-7α-carboxyethyl thioether--bovine serum albumin (P-7—BSA) or with 17-OHP-7α-carboxyethyl thioether--BSA (17-OHP-7--BSA). The antisera produced were of high affinity: Ka towards the homologous hapten was 3. 7 × 1010 1./mol for the anti-P serum and 5. 9 × 109 1/mol for the anti-17-OHP serum. The antiserum to P-7—BSA displayed little or no cross reaction (?= 2%) with the 20α-, 20β- or 5β-dihydro-derivatives of progesterone, moderate cross-reaction with pregnenolone (4%), but considerable cross-reaction with 11-deoxycorticosterone (7%), 5α-dihydro-progesterone (11%) and 17-OHP (15%). The antiserum to 17-OHP-7--BSA showed very little cross-reaction (?= 2%) with progesterone and other steroids lacking a 17α-hydroxyl group, such as pregnenolone or 11-deoxycorticosterone, but reacted significantly with 17α, 21-dihydroxy-4-pregnene-3, 20-dione (8%) and 3β, 17-dihydroxy-5-pregnen-20-one (13%). None of the sera reacted with testosterone, cortisol or estradiol-17β. It appears that conjugation of progesterone to protein through carbon-7 affords antisera comparable in specificity to those raised with 11α-conjugates and superior to those raised with 3-, 6- and 20-conjugates. The antiserum to 17-hydroxyprogesterone described is the first one that specifically recognizes this metabolite.  相似文献   

11.
P N Rao  K M Damodaran 《Steroids》1984,43(3):343-350
Starting from 11 beta-hydroxytestosterone, we achieved the synthesis of a strategic precursor, C-9 (11) unsaturated 5 alpha-androstane-3 alpha, 17 beta-diol 17-glucuronide (9a), for the preparation of 9 alpha,11 alpha-tritiated 5 alpha-androstane-3 alpha, 17 beta-diol 17-glucuronide. We optimized the reaction conditions for catalytic reduction employing hydrogen and subsequent base hydrolysis followed by purification on Amberlite XAD-2 resin to obtain the saturated 5 alpha-androstane-3 alpha, 17 beta-diol 17-glucuronide.  相似文献   

12.
A method is presented for the chemical synthesis of corticosteroid derivatives containing the 20α, 21-diol and 17α, 20α, 21-triol side chains. The ketol side chains of cortisol, corticosterone, 11-deoxycortisol, and 11-deoxycorticosterone were reduced at C-20 with sodium borohydride in a two-phase system consisting of aqueous calcium chloride and an organic phase of chloroform or ethyl acetate. Stereoselectivity of reduction was 92% α-oriented for cortisol and 79% α-oriented for 11-deoxycortisol at ?27°. The 20α-form diminished relative to the 20β-form with increasing temperature. For the 17-deoxy steroids, reduction to the 20α-form was 23% for 11-deoxycorticosterone and 41% for corticosterone. The 20α20β ratios of 17-deoxy steroids were unchanged between 0° and ?27°. Calcium ions increased the solubility of corticosteroids in the aqueous phase. We propose that calcium ions affect the stereochemistry of reduction by forming a bidentate complex with the side chains of 17α-hydroxy steroids, fixing them in an orientation favorable to 20α-reduction, and by altering the phase partition of the steroids.  相似文献   

13.
The effect of the 11-oxygen function on the stereochemieal course of homogeneous catalytic reduction of steroidal 1,4-dien-3-ones has been examined. Reduction of the 1,2-double bond in l,4-dien-3-ones using tristriphenylphosphinerhodium chloride as catalyst proceeds predominantly from the α-face except for the 11α-hydroxy substituted compound in which reduction is not stereospecific.  相似文献   

14.
湖北旋覆花化学成分的研究(英文)   总被引:1,自引:0,他引:1  
从湖北旋覆花(Inula hupehensis)地上部分分离得到19个化合物,经波谱数据分析分别鉴定为9-羟基-百里香酚(1),8,10-去氢-β-羟基-百里香酚(2),2-羟基-4-甲基苯乙酮(3),8,9-双羟基-9-百里香酚(4),10-羟基-8,9-双氧亚异丙基百里香酚(5),8,10-二羟基-9-异丁酰百里香酚(6),8-羟基-9-异丁酰-10-(2-甲基丁酰)百里香酚(7),8,9,10-三羟基百里香酚(8),8-羟基-9,10-二异丁酰百里香酚(9),neoechinulin A(10),3-醛基吲哚(11),3-羟乙酰基吲哚(12),丁香酸(13),4,6-二羟基-2-甲氧基苯乙酮(14),7-甲氧基-8-羟基香豆素(15),6-甲氧基山奈酚(16),(+)-正丁香酯素(17),β-棕榈精(18)和豆甾醇(19)。除了化合物8和9外,其他化合物均为首次从该植物中分离得到。  相似文献   

15.
The human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes both the NADP(H)-dependent oxido-reduction of cortisol and cortisone and the inter-conversion of 7alpha- and 7beta-hydroxy-dehydroepiandrosterone (DHEA) through a 7-oxo-DHEA intermediate. As shown with human liver and intestine fractions, 7alpha-hydroxy-epiandrosterone (7alpha-hydroxy-EpiA) and 7beta-hydroxy-EpiA were readily inter-converted with no evidence for a 7-oxo-EpiA intermediate. Whether this inter-conversion resulted from action of the 11beta-HSD1 or from an unknown epimerase is unresolved. Furthermore, whether these steroids could inhibit the cortisol-cortisone oxido-reduction remains a question. The recombinant human 11beta-HSD1 was used to test these questions. NADP(+) supplementation only provided the production of 7beta-hydroxy-EpiA out of 7alpha-hydroxy-EpiA with a V(max)/K(M) ratio at 0.1. With NADPH supplementation, both 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA were formed in low amounts from 7beta-hydroxy-EpiA and 7alpha-hydroxy-EpiA, respectively. These inter-conversions occurred without a trace of the putative 7-oxo-EpiA intermediate. In contrast, the 7-oxo-EpiA substrate was efficiently reduced into 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA, with V(max)/K(M) ratios of 23.6 and 5.8, respectively. Competitive and mixed type inhibitions of the 11beta-HSD1-mediated cortisol oxidation were exerted by 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA, respectively. The 11beta-HSD1-mediated cortisone reduction was inhibited in a competitive manner by 7-oxo-EpiA. These findings suggest that the active site of the human 11beta-HSD1 may carry out directly the epimeric transformation of 7-hydroxylated EpiA substrates. The low amounts of these steroids in human do not support a physiological importance for modulation of the glucocorticoid status in tissues.  相似文献   

16.
The preparation of (3,3,4,4-D4)-PGE2, (3,3,4,4-D4)-PGF, (3,3,4,4-D4)-9α,11α-dihydroxy-15-ketoprost-5-enoic acid and (3,3,4,4-D4)-9α,11α,15-trihydroxyprost-5-enoic acid is described. These compounds have been used for quantitative determination of corresponding nondeuterated prostaglandins by gas-liquid chromatography-mass spectrometry. The method is based on addition of a known amount of carrier to the sample and after purification and derivatization the ratio between the protium and deuterium form is measured in the mass spectrometer. Ions originating in deuterated and nondeuterated molecules are focused one at a time on the electron multiplier using an accelerating voltage alternator.With this technique 400 pg of PGF can be determined with a precision of ±3.7% (SD). The recoveries from plasma samples, containing 1–2.5 ng/ml of any of the compounds, is about 100±10%.  相似文献   

17.
The introduction of a double bond at carbons 6 and 7 (6-dehydro-derivatives) of deoxycorticosterone acetate (DOCA), cortisol-21-acetate, 9 alpha-fluorocortisol-21-acetate (9 alpha-F-C-ac) and aldosterone-21-acetate substantially reduces affinity for Type II receptors but not for Type I receptors. Such a modification changes the effect of these steroids on urinary excretion of Na+ and K+. 6-Dehydro-derivatives will thus bind preferentially to receptor Type I inducing the retention of sodium and compete with mineralocorticoids for such receptors. The increase in both natriuresis and kaliuresis when corticosteroids and their 6-dehydro-derivatives are administered together may be interpreted as evidence for a Type II receptor mediation of those ion fluxes. The ionic changes are not mediated by the (Na+ + K+)-ATPase system. The fluoration at 9 and the dehydrogenation at C9C11 of DOCA result in a strong increase of binding to Type I receptor and of sodium retention.  相似文献   

18.
Clapp CH  McKown J  Xu H  Grandizio AM  Yang G  Fayer J 《Biochemistry》2000,39(10):2603-2611
Previous work has demonstrated that the ferric form of soybean lipoxygenase-1 will catalyze an elimination reaction on 12-iodo-cis-9-octadecenoic acid (12-IODE) to produce 9, 11-octadecadienoic acid and iodide ion. Elimination is accompanied by irreversible inactivation of the enzyme on 1 out of 10 turnovers. In the present work, 11,11-dideuterio-12-IODE (D(2)-12-IODE) was synthesized and used to demonstrate that both the elimination reaction and inactivation of the enzyme exhibit very large kinetic isotope effects. The rates with the deuterated compound are so low that the isotope effects are difficult to quantify, but they appear to be comparable to the isotope effects previously observed for the normal reaction catalyzed by lipoxygenase and much larger than can be explained by zero-point energy considerations. ESR spectroscopy was used to demonstrate that 12-IODE can reduce ferric lipoxygenase to the ferrous form, and a large isotope effect on this process was observed with D(2)-12-IODE. It is proposed that the pathway leading to reduction and inactivation by 12-IODE is initiated by homolytic cleavage of the C(11)-H bond. Elimination could be initiated either by homolytic or by heterolytic cleavage of this bond. The results suggest that very large isotope effects may be a general feature of C-H bond cleavages catalyzed by this enzyme.  相似文献   

19.
The ability to assess the importance of secretin in various physiological processes is limited by the lack of specific potent antagonists. Recently, reduced peptide bond (psi) analogues of bombesin or substance P in which the -CONH- bond is replaced by -CH2NH- are reported to be receptor antagonists. To attempt to develop a new class of secretin receptor antagonists, we have adopted a similar strategy with secretin and sequentially altered the eight NH2-terminal peptide bonds, the biological active portion of secretin. In guinea pig pancreatic acini, secretin caused a 75-fold increase in cyclic AMP (cAMP). Secretin inhibited 125I-secretin binding with a half-maximal effect at 7 nM. Each of the psi analogues inhibited 125I-secretin binding. [psi 4,5]Secretin was the most potent, causing the half-maximal inhibition at 4 microM, and was 2-fold more potent than the [psi 1,2]secretin; 7-fold more than [psi 3,4]secretin, [psi 5,6]secretin, and [psi 8,9]secretin; 9-fold more than [psi 7,8]secretin; 13-fold more potent [psi 6,7]secretin, and 17-fold more than [psi 2,3]secretin. Secretin caused a half-maximal increase in cAMP at 1 nM. At concentrations up to 10 microM, [psi 2,3]secretin, [psi 4,5]secretin, and [psi 8,9]secretin did not alter cAMP whereas [psi 1,2]secretin and [psi 6,7]secretin caused a detectable increase in cAMP at 10 nM, [psi 7,8]secretin at 300 nM, [psi 5,6]secretin at 1 microM, and [psi 3,4]secretin at 10 microM. The [psi 4,5], [psi 2,3], and [psi 8,9] analogues of secretin each inhibited 1 nM secretin-stimulated cAMP as well as [psi 3,4]secretin, which functioned as a partial agonist. [psi 4,5]Secretin was the most potent, causing half-maximal inhibition at 3 microM whereas [psi 8,9]secretin was 6-fold less potent, and [psi 2,3]secretin and [psi 3,4]secretin were 17-fold less potent. [psi 4,5]Secretin inhibited secretin-stimulated cAMP and binding of 125I-secretin in a competitive manner. [psi 4,5]Secretin did not interact with cholecystokinin, bombesin, calcitonin gene-related peptide, or cholinergic receptors but did interact with receptors for vasoactive intestinal peptide, causing half-maximal inhibition at 72 microM and thus had a 18-fold higher affinity for secretin than vasoactive intestinal peptide receptors. These results indicate that reduced peptide bond analogues of the NH2 terminus of secretin represent a new class of secretin receptor antagonists. It is likely that in the future even more potent members of this class can be developed which may be useful to investigate the role of secretin in various physiological processes.  相似文献   

20.
A simple and sensitive radioimmunoassay for 11-deoxycortisol was developed. The antiserum produced in rabbits by immunizing with a complex of 11-deoxycortisol-3-oxime and bovine serum albumin (BSA) has little cross-reactivity with other endogenous steroids. The immunoassay procedure requires only one-step ethanol denaturation of binding proteins in plasma and extraction by an organic solvent can be omitted. Furthermore, use of 125I-labeled tracer significantly simplify the counting procedure. The method is sensitive enough to detect 1 microng/100 ml of 11-deoxycortisol. Plasma 11-deoxycortisol levels measured by this method after the administration of a single dose of metyrapone ranged from 5.0 to 19.2 microng/100 ml, whereas they were 0 to 4.0 microng/100 ml in hypopituitary patients. It is concluded that this simple method is useful for the routine assay of plasma 11-deoxycortisol as a parameter of the metyrapone tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号