首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Stentor coeruleus exhibits negative phototaxis and step-up photophobic response (avoiding reaction) to visible light (maximum at 610-620 nm in both responses). In the presence of deuterium oxide (D2O) the step-up photophobic response was markedly enhanced, whereas the phototactic orientation response was inhibited. The induction time for the step-up photophobic response was longer in D2O than in H2O, and the duration of ciliary reversal for the response was also longer in D2O than in H2O, indicating that certain steps of the sensory transduction chain are subject to solvent deuterium isotope effects. The enhancement of the step-up photophobic response in D2O was canceled by LaCl3, while the inhibition of the phototactic orientation response in D2O was partially removed by LaCl3, even though LaCl3 did not affect the phototactic orientation response. These results suggest that the sensory transduction mechanisms for the two photoresponses are different, although the photoreceptors (stentorin) are the same.  相似文献   

2.
In the ciliated protozoan Blepharisma, step-up photophobic response is mediated by a novel type of photosensory complex of pink-colored pigment "blepharismins" and 200-kDa membrane protein contained in the pigment granules located just beneath the plasma membrane. We found that the fluorescence intensity of isolated blepharismins decreased prominently with a decrease of H(+) concentration in the surrounding medium. In the present study, therefore, we utilized the endogenous pigment blepharismins as the pH indicator. Light stimulation evoked a sudden decrease in fluorescence intensity in a photosensitive anterior portion of the cell, suggesting that a drop in H(+) concentration occurred in the anterior region. The result indicates that the photosignal is transduced into cytoplasmic signaling of H(+) translocation across the outer membrane surrounding the pigment granules, so that cytosolic H(+) concentration in the vicinity of plasma membrane might be increased.  相似文献   

3.
1. Stentor coeruleus exhibits negative phototaxis (due to phototactic orientation response) and step-up photophobic response (avoiding reaction) to visible light. 2. The effect of Ja-value ([K+]/[Ca2+]1/2) and calcium ion concentration of the surrounding medium on the photoresponses in Stentor were studied. 3. The both types of photoresponses in Stentor are greatly affected by the Ja-value. A higher Ja-value medium suppressed the step-up photophobic response of Stentor, whereas the organism showed a higher degree of phototactic orientation response in higher Ja-value solutions. 4. The effect of the Ja-value on the step-up photophobic response was opposite to that on the phototactic orientation response. 5. With increasing calcium concentration but at a constant Ja-value, the number of Stentor showing the step-up photophobic response increased, whereas the phototactic orientation response of Stentor was suppressed at higher Ca2+ concentrations. 6. The effect of the calcium concentration on the photophobic response was also opposite to that on the phototactic orientation response, as in the case of Ja-value effect.  相似文献   

4.
A mixture of ADP, ferrous ions, and hydrogen peroxide (H2O2) generates hydroxyl radicals (OH) that attack the spin trap DMPO (5,5-dimethyl-pyrollidine-N-oxide) to yield the hydroxyl free radical spin-adduct, degrade deoxyribose and benzoate with the release of thiobarbituric acid-reactive material, and hydroxylate benzoate to give fluorescent products. Inhibition studies, with scavengers of the OH radical, suggest that the behavior of iron-ADP in the reaction is complicated by the formation of ternary complexes with certain scavengers and detector molecules. In addition, iron-ADP reacting with H2O2 appears to release a substantial number of OH radicals free into solution. During the generation of OH radicals the ADP molecule was, as expected, damaged by the iron bound to it. Damage to the iron ligand in this way is not normally monitored in reaction systems that use specific detector molecules for OH radical damage. Under certain reaction conditions the ligand may be the major recipient of OH radical damage thereby leading to the incorrect assumption that the iron ligand is a poor Fenton reactant.  相似文献   

5.
The response of superoxide dismutase- and catalase-deficient strains of Escherichia coli to redox active compounds was examined by electron spin resonance. Levels of radicals formed in response to pyocyanine in situ were extremely low and were found to be predominantly extracellular, even in a strain completely deficient in both superoxide dismutase and catalase. In cell-free extracts of superoxide dismutase-minus strains incubated with NADPH and pyocyanine, the primary accumulating radical was the superoxide anion (O2-), although low levels of the hydroxyl radical (.OH) were also detected. In contrast, extracts from strains lacking catalase were found to accumulate higher levels of hydroxyl radicals.  相似文献   

6.
Pronase-treated cells of Euglena gracilis Z show no discernible ultrastructural effects on the photoreceptor apparatus; however, there are physiological effects on swimming speed and on step-up and step-down photophobic responses, especially the latter. Pronase acts differently on the two photophobic responses: the step-down response is completely inhibited after 2 hr., whereas inhibition of the step-up response occurs in only 50% of the cells even after 24 hr. The effects are fully reversible, with step-up recovery quite rapid and step-down recovery considerably slower.  相似文献   

7.
ABSTRACT The cells of Blepharisma which possess red pigment (blepharismin) show step-up photophobic response (temporal ciliary reversal induced by a sudden increase in light intensity). Bleaching of the cells by cold shock raised a threshold light intensity for the response, Oxidation of red pigment that produced blue pigment did not raise the threshold for the response. The action spectrum for the step-up photophobic response of the cells which possess normal red pigment had peaks at about 580, 540 and 490 nm, a value which coincided with peaks of an absorption spectrum of the red pigment. The absorption spectrum of oxidized pigment (blue pigment) shifted 20 nm toward infrared light. The action spectrum for the response of the cells which possess blue pigment also shifted 20 nm toward infrared light. Results suggest that red pigment might be involved in the step-up photophobic response. Key words. Blepharismin, ciliary reversal, photoreceptors, photoresponse.  相似文献   

8.
Blepharisma japonicum is a ciliated protozoan exhibiting a strong step-up photophobic response upon illumination. The photoreceptor chromophores responsible for this response have been identified to be hypericin-like chromophores (blepharismin and oxyblepharismin), complexed to a 200 kDa non-water-soluble protein. The present work opens up new perspectives on the primary phototransduction steps of B. japonicum's light perception through a joined approach by steady-state fluorescence spectroscopy, time-resolved fluorescence anisotropy and sub-picosecond transient absorption spectroscopy. The free chromophore of the light-adapted form of the cell (oxyblepharismin) was studied in various solvents and its spectroscopic properties, as well as its primary excited-state reactivity, compared with those of the corresponding pigment-protein complex, extracted by phosphate-concentration-step chromatography on a hydroxyapatite column. Fluorescence anisotropy together with SDS PAGE electrophoresis results confirm that oxyblepharismin is non-covalently bound to the apoprotein and show that, in the excited state, it is free to rotate in all directions within the binding site where it experiences a large local viscosity. Time-resolved anisotropy measurements on aromatic amino acids confirm that the molecular weight of the protein is of the order of 200 kDa. Although showing very similar steady-state spectra, free oxyblepharismin and its protein complex have noticeably different excited-state behaviours. In particular, the protein complex exhibits a pronounced short-lived absorption feature in the 640--750 nm range, decaying biexponentially in 4 ps and 56 ps. Those decays, also observed in other spectral regions, are not found in the corresponding kinetics of the isolated pigment in solution. This early behaviour of the protein complex might be the signature of the primary phototransduction process, possibly involving an electron transfer from the pigment to a neighbouring protein acceptor residue as it had been suggested in previous studies.  相似文献   

9.
SYNOPSIS. Treatment of Euglena gracilis with the cationic detergent CTAB at concentrations of 0.05 mM or higher selectively inhibited the ability of the cells to respond with flagellar reorientation to a sudden decrease of light intensity (step-down photophobic response). The ability to respond similarly to an increase in light intensity (step-up photophobic response) was unaffected even at detergent concentrations at which the step-down response was completely inhibited. Electron microscopy of cells treated with 1.0 mM CTAB revealed selective destruction of the membrane of the reservoir and flagellum. No selective effects upon the step-down or step-up photophobic responses were found upon treatment of the cells with Triton X-100.  相似文献   

10.
Proteins which have been exposed to the hydroxyl radical (.OH) or to the combination of .OH plus the superoxide anion radical and oxygen (.OH + O2- + O2) exhibit altered primary structure and increased proteolytic susceptibility. The present work reveals that alterations to primary structure result in gross distortions of secondary and tertiary structure. Denaturation/increased hydrophobicity of bovine serum albumin (BSA) by .OH, or by .OH + O2- + O2 was maximal at a radical/BSA molar ratio of 24 (all .OH or 50% .OH + 50% O2-). BSA exposed to .OH also underwent progressive covalent cross-linking to form dimers, trimers, and tetramers, partially due to the formation of intermolecular bityrosine. In contrast, .OH + O2- + O2 caused spontaneous BSA fragmentation. Fragmentation of BSA produced new carbonyl groups with no apparent increase in free amino groups. Fragmentation may involve reaction of (.OH-induced) alpha-carbon radicals with O2 to form peroxyl radicals which decompose to fragment the polypeptide chain at the alpha-carbon, rather than at peptide bonds. BSA fragments induced by .OH + O2- + O2 exhibited molecular weights of 7,000-60,000 following electrophoresis under denaturing conditions, but could be visualized as hydrophobic aggregates in nondenaturing gels (confirmed with [3H]BSA following treatment with urea or acid). Combinations of various chemical radical scavengers (mannitol, urate, t-butyl alcohol, isopropyl alcohol) and gases (N2O, O2, N2) revealed that .OH is the primary species responsible for alteration of BSA secondary and tertiary structure. Oxygen, and O2- serve only to modify the outcome of .OH reaction. Furthermore, direct studies of O2- + O2 (in the absence of .OH) revealed no measurable changes in BSA structure. The process of denaturation/increased hydrophobicity was found to precede either covalent cross-linking (by .OH) or fragmentation (by .OH + O2- + O2). Denaturation was half-maximal at a radical/BSA molar ratio of 9.6, whereas half-maximal aggregation or fragmentation occurred at a ratio of 19.4. Denaturation/hydrophobicity may hold important clues for the mechanism(s) by which oxygen radicals can increase proteolytic susceptibility.  相似文献   

11.
Addition of a thiol compound to a solution containing Cu2+ and H2O2 resulted in the generation of hydroxyl radicals (OH.). These radicals were able to oxidize salicylic acid and tryptamine in a reaction that was strongly inhibited by the OH.-scavenger mannitol. Covalent coupling of the thiol compound to tryptamine did not significantly influence the degradation of the indole moiety subsequent to addition of H2O2 and Cu2+. The inhibiting effect of mannitol, however, was strongly reduced, indicating that the scavenger could not interfere with site-specific reactions of OH..  相似文献   

12.
The ability of oxyhaemoglobin and methaemoglobin to generate hydroxyl radicals (OH.) from H2O2 has been investigated using deoxyribose and phenylalanine as 'detector molecules' for OH.. An excess of H2O2 degrades methaemoglobin, releasing iron ions that react with H2O2 to form a species that appears to be OH.. Oxyhaemoglobin reacts with low concentrations of H2O2 to form a 'reactive species' that degrades deoxyribose but does not hydroxylate phenylalanine. This 'reactive species' is less amenable to scavenging by certain scavengers (salicylate, phenylalanine, arginine) than is OH., but it appears more reactive than OH. is to others (Hepes, urea). The ability of haemoglobin to generate not only this 'reactive species', but also OH. in the presence of H2O2 may account for the damaging effects of free haemoglobin in the brain, the eye, and at sites of inflammation.  相似文献   

13.
The avoidance by Stentor coeruleus of a light trap is caused by a step-up photophobic response. The phobic response invariably consists of a delay of about 200 ms, a stop response, a turn to one side, and resumption of swimming in the new direction. After this the cells enter a refractory period of 1–3 s following a phobic response, during which they will not give a second response. Phobic responses can be elicited by spatial and temporal increases in light intensity. The action spectrum for the step-up photophobic response resembles the absorption spectrum of stentorin, the proposed photoreceptor pigment, and of its chromophore, hypericin.The phobic response is specifically inhibited by the protonophorous uncouplers TPMP+ and FCCP but not by the ionophores gramicidin and A23187. Since the uncouplers block light-induced membrane potential changes at the same concentrations, it has been proposed that the primary photoreception causes a light-induced potential change, which in turn, induces a motor response.Abbreviations TPMP+ triphenyl methyl phosphonium bromide - FCCP carbonylcyanide p-trifluoromethoxy-phenylhydrazone  相似文献   

14.
Euglena gracilis, a unicellular freshwater protist exhibits different photomovement responses, such as phototaxis (oriented movement toward or away from the light source) and photophobic (abrupt turn in response to a rapid increase [step-up] or decrease [step-down] in the light fluence rate) responses. Photoactivated adenylyl cyclase (PAC) has been isolated from whole-cell preparations and identified by RNA interference (RNAi) to be the photoreceptor for step-up photophobic responses but not for step-down photophobic responses (M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, C. Yoshida, M. Sugai, T. Takahashi, T. Hori, M. Watanabe [2002] Nature 415: 1047-1051). The present study shows that knockdown of PAC by RNAi also effectively suppresses both positive and negative phototaxis, indicating for the first time that PAC or a PAC homolog is also the photoreceptor for photoorientation of wild-type E. gracilis. Recovery from RNAi occurred earlier for step-up photophobic responses than for positive and negative phototaxis. In addition, we investigated several phototaxis mutant strains of E. gracilis with different cytological features regarding the stigma and paraxonemal body (PAB; believed to be the location for the phototaxis photoreceptor) as well as Astasia longa, a close relative of E. gracilis. All of the E. gracilis mutant strains had PAC mRNAs, whereas in A. longa, a different but similar mRNA was found and designated AlPAC. Consistently, all of these strains showed no phototaxis but performed step-up photophobic responses, which were suppressed by RNAi of the PAC mRNA. The fact that some of these strains possess a cytologically altered or no PAB demonstrates that at least in these strains, the PAC photoreceptor responsible for the step-up photophobic responses is not located in the PAB.  相似文献   

15.
The participation of the primary radicals in the bleaching of aqueous solutions of the carotenoid crocin by ionizing radiation was investigated, employing both X-radiolysis and pulse radiolysis. The pulse-radiolytic data demonstrated a very rapid diffusion-controlled attack by both hydroxyl radicals (.OH) and hydrated electrons (eaq-), while superoxide anions (O2-) did not react at all. The site of the initial reaction of these radicals was not limited to the polyene chromophore. Slower secondary reactions involving crocin alkyl or peroxy radicals contribute mainly to the overall bleaching, in particular during steady-state irradiation.  相似文献   

16.
Yeast glutathione reductase catalyzes an NADPH-dependent reduction of the herbicide paraquat in vitro. The single-electron reduced paraquat radical reacts with O2 to generate the superoxide radical, O2.-. Hydroxyl radicals (OH.) can also be detected in this assay system by their reaction with phenol to form diphenols, as assayed quantitatively by a highly specific and sensitive method employing gas-liquid chromatography. Formation of hydroxyl radicals can be virtually completely suppressed by catalase and partially suppressed by superoxide dismutase. The role of hydroxyl radicals and superoxide in paraquat toxicity in vivo is discussed.  相似文献   

17.
The one-electron reduction of nitrous oxide is a possible pathway to the hydroxyl radical. The one- and two-electron reduction potentials EO' (N2O/OH,N2) and EO' (N2O/H2O, N2) are calculated to be 0.32 V and 1.32 V at pH 7, respectively, for all species dissolved in water. Although nitrous oxide is thermodynamically capable of oxidising a variety of biomolecules, it is kinetically rather inert. The reason that nitrous oxide does not produce hydroxyl radicals readily might be that the one-electron reduction proceeds through an N2O- intermediate which is energetically very unfavourable: EO (N2O/N2O-) = -1.1 V.  相似文献   

18.
Free radicals in iron-containing systems   总被引:5,自引:0,他引:5  
All oxidative damage in biological systems arises ultimately from molecular oxygen. Molecular oxygen can scavenge carbon-centered free radicals to form organic peroxyl radicals and hence organic hydroperoxides. Molecular oxygen can also be reduced in two one-electron steps to hydrogen peroxide in which case superoxide anion is an intermediate; or it can be reduced enzymatically so that no superoxide is released. Organic hydroperoxides or hydrogen peroxide can diffuse through membranes whereas hydroxyl radicals or superoxide anion cannot. Chain reactions, initiated by chelated iron and peroxides, can cause tremendous damage. Chain carriers are chelated ferrous ion; hydroxyl radical .OH, or alkoxyl radical .OR, and superoxide anion O2-. or organic peroxyl radical RO2.. Of these free radicals .OH and RO2. appear to be most harmful. All of the biological molecules containing iron are potential donors of iron as a chain initiator and propagator. An attacking role for superoxide dismutase is proposed in the phagocytic process in which it may serve as an intermediate enzyme between NADPH oxidase and myeloperoxidase. The sequence of reactants is O2----O2-.----H2O2----HOCl.  相似文献   

19.
Photoactivated adenylyl cyclase (PAC) was first purified from a photosensing organelle (the paraflagellar body) of the unicellular flagellate Euglena gracilis, and is regarded as the photoreceptor for the step-up photophobic response. Here, we report the kinetic properties of photoactivation of PAC and a change in intracellular cAMP levels upon blue light irradiation. Activation of PAC was dependent both on photon fluence rate and duration of irradiation, between which reciprocity held well in the range of 2--50 micromol m(-2) s(-1)(total fluence of 1200 micromol m(-2)). Intermittent irradiation also caused activation of PAC in a photon fluence-dependent manner irrespective of cycle periods. Wavelength dependency of PAC activation showed prominent peaks in the UV-B/C, UV-A and blue regions of the spectrum. The time course of the changes in intracellular cAMP levels corresponded well with that of the step-up photophobic response. From this and the kinetic properties of PAC photoactivation, we concluded that an increase in intracellular cAMP levels evoked by photoactivation of PAC is a key event of the step-up photophobic response.  相似文献   

20.
Negative phototactic orientation, step-up photophobic responses and light-induced action potentials have been studied in the ciliate Stentor coeruleus. A resolved action spectrum, based on fluence rate-response curves, is consistent with stentorin as the photoreceptor. Calcium flux blockers prolong the response time for ciliary stop and reversal and inhibit step-up photophobic responses. Drugs believed to affect the membrane-bound calcium pump likewise inhibit phobic responses. On the other hand, α-phosphatidic acid promotes Ca2+-influx and enhances the photophobic sensitivity of the organism, thus providing an unambiguous evidence for the role of Ca2+ influx. A change in the response time decreases the degree of phototactic orientation, indicating that negative phototaxis in this organism is brought about by subsequent phobic responses of individual rows of cilia as the associated photoreceptor granules experience an increase in light intensity when the organism rotates during forward locomotion in lateral light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号