首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of bombesin on gastrin release and gastric acid secretion was investigated in 10 healthy volunteers. Bombesin (0.6 μg · Kg?1 · hr?1) produced a significantly higher (p< 0.001) increase in plasma gastrin levels (86.7 11.1 pmo/1 than after a protein meal (39.6 ± 5.6 pmol1/1). The gastric acid secretory response to bombesin (12.1 ± 2.9 mEq · hr?1) was however significantly lower (p< 0.005) than the maximal response produced by pentagostrin (20.9 ± 3.5 mEq · hr?1) at the dose of 6 μg · Kg?1. Atropine did not modify gastrin release induced by bombesin but significantly reduced gastric acid secretion (p< 0.01). From the data presented it may be hypothesized that less biologically active forms of gastrin and/or other peptides inhibiting the gastrin effect upon gastric acid secretion may be released by bombesin.  相似文献   

2.
Intravenous infusion of salmon calcitonin in man produced an increase in the plasma levels and urinary excretion of cyclic AMP. This study demonstrates a net extraction of cyclic AMP from plasma by the kidneys but salmon calcitonin does not act only on the kidney and stimulates the production of cyclic AMP in extra renal tissues. The excess of cyclic AMP formed is catabolized by the kidneys.  相似文献   

3.
The purpose of these studies was to measure circulating gastrin and somatostatin concentrations during sham feeding in humans and to evaluate the effect of two doses of intravenous atropine on circulating concentrations of these peptides. Gastric acid and bicarbonate secretion and pulse rate were also measured. Sham feeding increased plasma gastrin concentrations by approximately 15 pg/ml but had no effect on plasma somatostatin-like immunoreactivity (SLI). A small dose of atropine (5 micrograms/kg) augmented plasma gastrin concentrations during sham feeding significantly (P less than 0.01), but did not affect plasma SLI. Atropine also significantly inhibited gastric acid secretion and gastric bicarbonate secretion (by 62% and 52%, respectively), but pulse rate was not affected. A larger dose of atropine (15 micrograms/kg intravenously) suppressed plasma gastrin concentrations significantly compared to the smaller 5 micrograms/kg atropine dose (P less than 0.02), so that plasma gastrin concentrations when 15 micrograms/kg atropine was given were not significantly different from those during the control study. 15 micrograms/kg atropine reduced gastric acid and bicarbonate secretion by 81% and 66%, respectively, and also increased pulse rate by 15 min-1. These studies indicate that small doses of atropine enhance vagally mediated gastrin release in humans, probably by blocking a cholinergic inhibitory pathway for gastrin release. Although the nature of this cholinergic inhibitory mechanism is unclear, we found no evidence to incriminate somatostatin. Our finding that the larger dose of atropine reduced serum gastrin concentrations compared with the smaller dose suggests that certain vagal-cholinergic pathways may facilitate gastrin release.  相似文献   

4.
In the present study the effect of indomethacin-induced prostaglandin deficiency was examined on the release of bombesin-like immunoreactivity (BLI), a putative peptidergic neurotransmitter, from the isolated perfused rat stomach. In addition, gastrin and somatostatin (SLI) secretion was determined. Pretreatment of rats with indomethacin (2 mg/kg X h) resulted in a 3-fold increase of basal BLI secretion. In response to acetylcholine (2 X 10(-6) M) BLI rose from 2,000 to 4,000 pg/min, whereas in controls BLI increased from 400 to 1,400 pg/min. While absolute values for BLI secretion were higher in indomethacin-treated stomachs the relative increase above baseline was lower (100 vs. 250%). In control rats the increase in BLI secretion in response to acetylcholine was abolished when the acidity in the gastric lumen was increased from pH 7 to pH 2. After indomethacin, however, the stimulatory effect of acetylcholine during luminal pH 7 and pH 2 was identical. The decrease of SLI by acetylcholine at luminal pH 7 was abolished in indomethacin-treated stomachs in response to 10(-6) M acetylcholine, and 2 X 10(-6) M had even a stimulatory effect on SLI secretion. Indomethacin pretreatment reduced gastrin secretion at luminal pH 7. These data demonstrate that endogenous prostaglandins exert an inhibitory tone on basal and stimulated BLI and stimulated SLI secretion in the rat stomach. It is suggested that endogenous prostaglandins also inhibit the release of a peptidergic neurotransmitter, similar to their effect on the classical neurotransmitters acetylcholine and norepinephrine.  相似文献   

5.
6.
《Regulatory peptides》1987,17(5):285-293
Infusion of the neuropeptide bombesin stimulates the secretion of several gastrointestinal hormones by an unknown mechanism. We have investigated the effects of atropine (15 ng/kg as bolus followed by 2.5 ng/kg · 30 min) and somatostatin (125 μg as i.v. bolus followed by 62.5 μg/30 min) on the stimulation of 3 hormones (gastrin, cholecystokinin and pancreatic polypeptide) by 60 pmol/kg · 20 min bombesin in 6 healthy volunteers. Plasma samples for measurement of hormones by sensitive and specific radioimmunoassays were obtained at − 5, 0, 2.5, 5, 7.5, 10, 15, 20, 25 and 30 min. Bombesin induced significant increases in plasma gastrin (12 ± 2 to 34 ± 3 pM; P < 0.0005), cholecystokinin (1.2 ± 0.2 to 8.9 ± 0.7 pM; P < 0.0001) and pancreatic polypeptide (22 ± 4 to 72 ± 19 pM; P < 0.05). There were great differences between the effects of atropine and somatostatin on the hormonal responses to bombesin. Atropine slightly increased the response of gastrin by 19% and that of cholecystokinin by 15%, but strongly inhibited the bombesin-stimulated pancreatic polypeptide secretion by 97%. On the other hand, somatostatin inhibited the bombesin-induced secretion of gastrin by 48%, cholecystokinin by 82% and pancreatic polypeptide by 107%. These results point to considerable qualitative and quantitative differences in the stimulatory mechanisms of bombesin on the hormones studied.  相似文献   

7.
We have studied the role of vitamin D in the regulation of gastrin and gastric somatostatin secretion from the isolated perfused rat stomach. In Ca-deficient vitamin D-deficient rats (Ca(-)D(-) group), the basal and bombesin-stimulated gastrin and gastric somatostatin release (basal IRGa, basal IRS, sigma delta IRGa, and sigma delta IRS) all were significantly lower than in Ca-replete vitamin D-replete rats (Ca(+)D(+) group), and also lower than in Ca-replete vitamin D-deficient rats (Ca(+)D(-) group) except for the basal IRGa. In the Ca(+)D(-) group, the basal IRGa and IRS, and sigma delta IRS were not significantly lower than in the Ca(+)D(+) group. Although there was no significant impairment in basal IRGa, sigma delta IRGa in the Ca(+)D(-) group was significantly lower than in the Ca(+)D(+) control group. Thus, the gastrin and gastric somatostatin secretion from the Ca-deficient vitamin D-deficient rats were impaired. In addition, the impaired gastrin and gastric somatostatin secretions seem to be caused not only by a decrease in serum Ca but also by the reduced effect of the vitamin D on the G and gastric D cells.  相似文献   

8.
9.
10.
11.
B Saffouri  G Weir  K Bitar  G Makhlouf 《Life sciences》1979,25(20):1749-1753
The effect of a high capacity somatostatin antiserum on antral gastrin secretion was examined in an isolated vascularly perfused rat stomach preparation. Infusion of somatostatin antiserum diluted 1:1 and 1:9 with Krebs buffer solution produced significant increases in gastrin secretion throughout the period of infusion. Neither infusion of somatostatin antiserum diluted 1:99 nor infusion of control rabbit serum had any effect on gastrin secretion. The data indicate that antral somatostatin excercises a continous restraint on gastrin secretion in the basal state.  相似文献   

12.
Bombesin, besides many other actions on the mammalian gastroentero-pancreatic tract, strongly stimulates the release of pancreatic-polypeptide (PP) in dogs. In 8 healthy human volunteers (5 males, 3 females), the PP response during bombesin infusion was low (25.7 ± 6.3 peak vs. 5.0 ± 2.0 basal pmol/1) compared to the effect of a protein meal (144.1 ± 13.4 pmol/1) or to the gastrin response to the same dose of the amphibian polypeptide (140.0 ± 23.6 pmol/1 eq SHG 17 I). The response pattern of PP and gastrin was different as PP concentrations peaked 10 min after cessation of bombesin infusion (32.0 ± 4.9 pmol/1) when gastrin concentrations already were down to one third of the maximal response. Atropine inhibited the PP response to bombesin but did not abolish it completely. It is concluded that in man, the total effect of bombesin on PP secretion is minor compared both to the effect of the peptide on gastrin secretion in man and to the effect of bombesin in dogs. It is suggested that bombesin might have a dual, inhibitory-stimulatory, effect on PP secretion in man.  相似文献   

13.
The effects of PGE2 and PGD2 on gastric somatostatin and gastrin releases were investigated using the isolated perfused rat stomach. In the presence of 5.5 mM glucose, the infusion of PGE2 elicited a significant augmentation in somatostatin release, but suppressed gastrin secretion from the perfusate. On the other hand, PGD2 did not affect somatostatin release, although the gastrin secretion decreased significantly, the same as after PGE2 infusion. These results suggest that PGE2 and PGD2 may be important in the regulation of gastric endocrine function, but that PGD2 does not affect gastric somatostatin secretion.  相似文献   

14.
Galanin has been shown to be present in the gastrointestinal tract, pancreas and CNS. In the rat stomach, immunohistochemical studies have revealed the presence of galanin in the intrinsic nervous system suggesting a function as putative neurotransmitter or neuromodulator which could affect neighbouring exo- or endocrine cells. Therefore this study was performed to determine the effect of galanin on the secretion of gastrin and somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach. The stomach was perfused via the celiac artery and the venous effluent was collected from the portal vein. The luminal content was kept at pH 2 or 7 Galanin at a concentration of 10(-10), 10(-9) and 10(-8) M inhibited basal gastrin release by 60-70% (60-100 pg/min; p less than 0.05) at luminal pH 7. At luminal pH 2 higher concentrations of galanin (10(-9) and 10(-8) M) decreased basal gastrin secretion by 60-70% (60-100 pg/min; p less than 0.05). This inhibitory effect was also present during infusion of neuromedin-C, a mammalian bombesin-like peptide that stimulates gastrin release. SLI secretion remained unchanged during galanin administration. The inhibitory action of galanin on gastrin secretion was also present during the infusion of tetrodotoxin suggesting that this effect is not mediated via neural pathways. The present data demonstrate that galanin is an inhibitor of basal and stimulated gastrin secretion and has to be considered as an inhibitory neurotransmitter which could participate in the regulation of gastric G-cell function.  相似文献   

15.
Summary Parafollicular C cells of the rat thyroid contain several immunoreactive peptides including calcitonin (CT), calcitonin gene-related peptide (CGRP), somatostatin and a C-terminal gastrin/CCK immunoreactive epitope as shown at the light-and electron-microscopical levels. Adult thyroid C cells are strongly immunoreactive to CT and most of the cells also react strongly with CGRP antisera and weakly with a gastrin/CCK antiserum. The latter antiserum may cross-react with CGRP. This cross-reactivity probably only occurs at very high concentrations of CGRP observed in adult thyroid C cells, but not in intrathyroidal CGRP-containing nerves, nor in early neonatal C cells. In neonatal rats, somatostatin immunoreactive C cells are numerous and most of these cells are also CT and CGRP immunoreactive. In contrast, only few C cells display somatostatin immunoreactivity in adult rat thyroids. Sequential staining experiments revealed that some thyroidal C cells simultaneously express all four types of immunoreactivity. At the electron microscopical level, all of these immunoreactivities were observed in secretory granules of C cells. Double- and triple-staining experiments, moreover, documented that some peptides are co-localized in the same granules.  相似文献   

16.
Parafollicular C cells of the rat thyroid contain several immunoreactive peptides including calcitonin (CT), calcitonin gene-related peptide (CGRP), somatostatin and a C-terminal gastrin/CCK immunoreactive epitope as shown at the light- and electron-microscopical levels. Adult thyroid C cells are strongly immunoreactive to CT and most of the cells also react strongly with CGRP antisera and weakly with a gastrin/CCK antiserum. The latter antiserum may cross-react with CGRP. This cross-reactivity probably only occurs at very high concentrations of CGRP observed in adult thyroid C cells, but not in intrathyroidal CGRP-containing nerves, nor in early neonatal C cells. In neonatal rats, somatostatin immunoreactive C cells are numerous and most of these cells are also CT and CGRP immunoreactive. In contrast, only few C cells display somatostatin immunoreactivity in adult rat thyroids. Sequential staining experiments revealed that some thyroidal C cells simultaneously express all four types of immunoreactivity. At the electron microscopical level, all of these immunoreactivities were observed in secretory granules of C cells. Double- and triple-staining experiments, moreover, documented that some peptides are co-localized in the same granules.  相似文献   

17.
Intravenous infusion of salmon calcitonin in six healthy subjects produced an increase in the plasma levels and urinary excretion of cyclic AMP. Cyclic AMP clearance diminished but remained higher than inulin clearance. Salmon calcitonin was also infused in six hypertensive patients with normal glomerular filtration rate. Arterial and renal venous plasma concentration of cyclic AMP were clearly raised. The difference between both these concentrations was not significant in the control periods but became marked during the treatment and post treatment periods demonstrating a net extraction of cyclic AMP from plasma by the kidneys. Renal extraction of cyclic AMP was lower than its urinary excretion in the control periods whereas it was clearly higher after salmon calcitonin was given. This shows that salmon calcitonin stimulates the production of cyclic AMP in extra-renal tissues and that the excess of cyclic AMP formed is catabolized by the kidneys.  相似文献   

18.
Purpose: The intent of this work was to assess the impact of lyophilization on the encapsulation of salmon calcitonin (sCT) into liposomes.

Methods: Four different liposomal formulations were investigated, i.e. DPPC:Chol:DSPE-PEG2000 (75:20:5 and 65:30:5) and DPPC:Chol (80:20 and 66.7:33.3). Lipid films were prepared and hydrated with loading buffer containing sCT and different concentrations of the cryoprotectant, trehalose dihydrate. The liposomes were lyophilized, reconstituted and extruded to obtain small unilamellar vesicles. Non-encapsulated sCT was separated by gel filtration. Non-lyophilized formulations and liposomes lyophilized without the cryoprotectant were used as controls. Liposomes were analyzed for particle size, polydispersity index, zeta-potential and encapsulation efficiency. 31P-NMR (phosphorous nuclear magnetic resonance spectroscopy) was performed on selected formulations.

Results: Post-lyophilization, no significant change in particle sizes and zeta-potentials were noted, regardless of the presence or absence of the cryoprotectant. Encapsulation efficiencies, however, increased following lyophilization, in both PEGylated (lyophilization control batch) and non-PEGylated liposomes (cryoprotectant batches only). 31P-NMR revealed the presence of two distinct vesicle populations – liposomes and micelles – in PEGylated formulation. The presence of micelles might be responsible for the observed encapsulation enhancement of sCT in the PEGylated formulation.

Conclusions: Lyophilization resulted in an increase in encapsulation efficiency of sCT in PEGylated liposomes, even in the absence of a cryoprotectant, due to presence of micellar vesicles.  相似文献   


19.
20.
Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces no effect or a transient reduction in daily food intake and body weight. Our aim was to identify an intermittent dosing strategy for intraperitoneal infusion of salmon calcitonin (sCT), a homolog of amylin that produces a sustained 25-35% reduction in daily food intake and adiposity in diet-induced obese rats. Rats (649 +/- 10 g body wt, 27 +/- 1% body fat), with intraperitoneal catheters tethered to infusion swivels, had free access to a 45% fat diet. Food intake, body weight, and adiposity during the 7-wk test period were relatively stable in the vehicle-treated rats (n = 16). None of 10 sCT dosing regimens administered in succession to a second group of rats (n = 18) produced a sustained 25-35% reduction in daily food intake for >5 days, although body weight and adiposity were reduced by 9% (587 +/- 12 vs. 651 +/- 14 g) and 22% (20.6 +/- 1.2 vs. 26.5 +/- 1.1%), respectively, across the 7-wk period. The declining inhibitory effect of sCT on daily food intake with the 6-h interinfusion interval appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of sCT on daily food intake with the 2- to 3-h interinfusion interval suggested possible receptor downregulation and tolerance to frequent sCT administration; however, food intake increased dramatically when sCT was discontinued for 1 day after apparent loss of treatment efficacy. Together, these results demonstrate the activation of a potent homeostatic response to increase food intake when sCT reduces food intake and energy reserves in diet-induced obese rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号