首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanothermobacter marburgensis is a strictly anaerobic, thermophilic methanogenic archaeon that uses methanogenesis to convert H2 and CO2 to energy. M. marburgensis is one of the best-studied methanogens, and all genes required for methanogenic metabolism have been identified. Nonetheless, the present study describes a gene (Gene ID 9704440) coding for a putative NAD(P)H:quinone oxidoreductase that has not yet been identified as part of the metabolic machinery. The gene product, MmNQO, was successfully expressed, purified and characterized biochemically, as well as structurally. MmNQO was identified as a flavin-dependent NADH:quinone oxidoreductase with the capacity to oxidize NADH in the presence of a wide range of electron acceptors, whereas NADPH was oxidized with only three acceptors. The 1.50 Å crystal structure of MmNQO features a homodimeric enzyme where each monomer comprises 196 residues folding into flavodoxin-like α/β domains with non-covalently bound FMN (flavin mononucleotide). The closest structural homologue is the modulator of drug activity B from Streptococcus mutans with 1.6 Å root-mean-square deviation on 161 Cα atoms and 28% amino-acid sequence identity. The low similarity at sequence and structural level suggests that MmNQO is unique among NADH:quinone oxidoreductases characterized to date. Based on preliminary bioreactor experiments, MmNQO could provide a useful tool to prevent overflow metabolism in applications that require cells with high energy demand.  相似文献   

2.
Helicobacter pylori, a major cause of human gastric disease, is a microaerophilic bacterium that contains neither pyruvate nor 2-oxoglutarate dehydrogenase activity. Previous studies (N. J. Hughes, P. A. Chalk, C. L. Clayton, and D. J. Kelly, J. Bacteriol. 177:3953–3959, 1995) have indicated that the major routes for the generation of acetyl coenzyme A (acetyl-CoA) and succinyl-CoA are via pyruvate:flavodoxin oxidoreductase (POR) and 2-oxoglutarate:acceptor oxidoreductase (OOR), respectively. The purified POR is a heterotetrameric protein, with subunits of 48 (PorA), 36 (PorB), 24 (PorC), and 14 (PorD) kDa. In this study OOR has been purified, and it is similarly composed of polypeptides of 43 (OorA), 33 (OorB), 24 (OorC), and 10 (OorD) kDa. Both POR and OOR are oxygen labile and are likely to be major contributors to the microaerophilic phenotype of H. pylori. Unlike POR, OOR was unable to use a previously identified flavodoxin (FldA) as an electron acceptor. Although the purified enzymes were unable to reduce NAD(P), electrons from both pyruvate and 2-oxoglutarate could reduce NADP in cell extracts, consistent with a role for these oxidoreductases in the provision of NADPH as a respiratory electron donor. The H. pylori por, oor, and fldA genes were cloned and sequenced. The deduced por gene products showed significant sequence similarity to archaeal four-subunit 2-oxoacid:acceptor oxidoreductases. However, the amino acid sequences of OorA and -B were more closely related to that of the two-subunit POR of the aerobic halophile Halobacterium halobium. Both porD and oorD encode integral ferredoxin-like subunits. POR and OOR are probably essential enzymes in H. pylori, as insertion inactivation of porB and oorA appeared to be lethal.  相似文献   

3.
Bovine NADH:ubiquinone oxidoreductase (Complex I) is the first complex in the mitochondrial respiratory chain. It has long been assumed that it contained only one FMN group. However, as demonstrated in 2003, the intact enzyme contains two FMN groups. The second FMN was proposed to be located in a conserved flavodoxin fold predicted to be present in the PSST subunit. The long-known reaction of Complex I with NADPH differs in many aspects from that with NADH. It was proposed that the second flavin group was specifically involved in the reaction with NADPH. The X-ray structure of the hydrophilic domain of Complex I from Thermus thermophilus (Sazanov and Hinchliffe 2006, Science 311, 1430–1436) disclosed the positions of all redox groups of that enzyme and of the subunits holding them. The PSST subunit indeed contains the predicted flavodoxin fold although it did not contain FMN. Inspired by this structure, the present paper describes a re-evaluation of the enigmatic reactions of the bovine enzyme with NADPH. Published data, as well as new freeze-quench kinetic data presented here, are incompatible with the general opinion that NADPH and NADH react at the same site. Instead, it is proposed that these pyridine nucleotides react at opposite ends of the 90?Å long chain of prosthetic groups in Complex I. Ubiquinone is proposed to react with the Fe-S clusters in the TYKY subunit deep inside the hydrophilic domain. A new model for electron transfer in Complex I is proposed. In the accompanying paper this model is compared with the one advocated in current literature.  相似文献   

4.
Methanogenic oxidation of butyrate to acetate requires a tight cooperation between the syntrophically fermenting Syntrophomonas wolfei and the methanogen Methanospirillum hungatei, and a reversed electron transport system in S. wolfei was postulated to shift electrons from butyryl coenzyme A (butyryl-CoA) oxidation to the redox potential of NADH for H2 generation. The metabolic activity of butyrate-oxidizing S. wolfei cells was measured via production of formazan and acetate from butyrate, with 2,3,5-triphenyltetrazolium chloride as electron acceptor. This activity was inhibited by trifluoperazine (TPZ), an antitubercular agent known to inhibit NADH:menaquinone oxidoreductase. In cell extracts of S. wolfei, the oxidation of NADH could be measured with quinones, viologens, and tetrazolium dyes as electron acceptors, and also this activity was inhibited by TPZ. The TPZ-sensitive NADH:acceptor oxidoreductase activity appeared to be membrane associated but could be dissociated from the membrane as a soluble protein and was semipurified by anion-exchange chromatography. Recovered proteins were identified by peptide mass fingerprinting, which indicated the presence of an NADH:acceptor oxidoreductase as part of a three-component [FeFe] hydrogenase complex and a selenocysteine-containing formate dehydrogenase. Furthermore, purification of butyryl-CoA dehydrogenase (Bcd) activity and peptide mass fingerprinting revealed two Bcd proteins different from the Bcd subunit of the Bcd/electron-transfer flavoprotein complex (Bcd/EtfAB) predicted from the genome sequence of S. wolfei. The results suggest that syntrophic oxidation of butyrate in S. wolfei involves a membrane-associated TPZ-sensitive NADH:acceptor oxidoreductase as part of a hydrogenase complex similar to the recently discovered “bifurcating” hydrogenase in Thermotoga maritima and butyryl-CoA dehydrogenases that are different from Bcd of the Bcd/EtfAB complex.Butyrate is fermented to methane and CO2 by syntrophic communities in which a methanogenic partner organism maintains a low hydrogen partial pressure to allow the oxidation of butyrate to acetate (19, 20, 29). Only under such conditions can butyrate-oxidizing bacteria such as Syntrophomonas wolfei gain energy from the latter reaction in a range of approximately −20 kJ per mol of butyrate, which is just sufficient to support microbial growth (29). It was postulated that S. wolfei has to invest some of the ATP that is formed in the acetate kinase reaction during the β-oxidation of butyrate into an ATP-driven reversed electron transport in order to shift electrons from butyryl coenzyme A (butyryl-CoA) oxidation to the redox potential of NADH (34).Experimental evidence for the involvement of a proton gradient and of ATPase activity in this process was obtained with intact cell suspensions (36), and it was hypothesized that menaquinone-7 could play an essential role in this reaction (36). This would imply that membrane-bound enzymes similar to complex I of the aerobic respiratory chain, i.e., NADH dehydrogenase (NDH), operate in reverse to reduce NAD+ with butyrate electrons.Another option for a reversed electron transport during butyrate oxidation and hydrogen formation in S. wolfei could be a reversal of the so-called Buckel-Thauer reaction. In this reaction that was described for ethanol-acetate fermentation by Clostridium kluyveri, electrons from NADH are disproportionated to reduce both crotonyl-CoA and ferredoxin simultaneously. The reaction is catalyzed by the cytoplasmic butyryl-CoA dehydrogenase/electron-transfer flavoprotein (Bcd/EtfAB) complex (13, 18). Very recently, another “bifurcating” electron pathway has been described for an NADH- and ferredoxin-coaccepting di-iron hydrogenase complex in Thermotoga maritima (30). Here, electrons from NADH and from ferredoxin are combined to produce hydrogen, and the genome sequence of S. wolfei has been shown to contain candidate genes for such a three-component hydrogenase complex (30). Nonetheless, the energetic situation of syntrophic butyrate oxidation is basically different from that of ethanol or glucose degradation: electrons arise at comparably positive redox potentials, i.e., at −125 mV/−10 mV (12, 28) and −250 mV, and there is no oxidation step involved that could be coupled directly with ferredoxin reduction.In the present study, we report that butyrate oxidation by S. wolfei cell suspensions can be inhibited by trifluoperazine (TPZ), an antitubercular agent that has been shown to inhibit type II NADH:menaquinone oxidoreductase NDH-2 in Mycobacterium tuberculosis (40), and that a TPZ-sensitive NADH:acceptor oxidoreductase activity can be measured in cell extracts of S. wolfei cells. This enzyme system and a butyryl-CoA dehydrogenase were enriched by anion-exchange chromatography, and the obtained proteins were identified by peptide mass fingerprinting.  相似文献   

5.
6.
The anaerobic acetogenic bacterium Acetobacterium woodii couples caffeate reduction with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions, a process referred to as caffeate respiration. We addressed the nature of the hitherto unknown enzymatic activities involved in this process and their cellular localization. Cell extract of A. woodii catalyzes H2-dependent caffeate reduction. This reaction is strictly ATP dependent but can be activated also by acetyl coenzyme A (CoA), indicating that there is formation of caffeyl-CoA prior to reduction. Two-dimensional gel electrophoresis revealed proteins present only in caffeate-grown cells. Two proteins were identified by electrospray ionization-mass spectrometry/mass spectrometry, and the encoding genes were cloned. These proteins are very similar to subunits α (EtfA) and β (EtfB) of electron transfer flavoproteins present in various anaerobic bacteria. Western blot analysis demonstrated that they are induced by caffeate and localized in the cytoplasm. Etf proteins are known electron carriers that shuttle electrons from NADH to different acceptors. Indeed, NADH was used as an electron donor for cytosolic caffeate reduction. Since the hydrogenase was soluble and used ferredoxin as an electron acceptor, the missing link was a ferredoxin:NAD+ oxidoreductase. This activity could be determined and, interestingly, was membrane bound. A search for genes that could encode this activity revealed DNA fragments encoding subunits C and D of a membrane-bound Rnf-type NADH dehydrogenase that is a potential Na+ pump. These data suggest the following electron transport chain: H2 → ferredoxin → NAD+ → Etf → caffeyl-CoA reductase. They also imply that the sodium motive step in the chain is the ferredoxin-dependent NAD+ reduction catalyzed by Rnf.  相似文献   

7.
Moreau F  Romani R 《Plant physiology》1982,70(5):1385-1390
After preparation on self-generated Percoll gradients, avocado (Persea americana Mill, var. Fuerte and Hass) mitochondria retain a high proportion of cyanide-insensitive respiration, especially with α-ketoglutarate and malate as substrates. Whereas α-ketoglutarate oxidation remains unchanged, the rate of malate oxidation increases as ripening advances through the climacteric. An enhancement of mitochondrial malic enzyme activity, measured by the accumulation of pyruvate, closely parallels the increase of malate oxidation. The capacity for cyanide-insensitive respiration is also considerably enhanced while respiratory control decreases (from 3.3 to 1.7), leading to high state 4 rates.

Both malate dehydrogenase and malic enzyme are functional in state 3, but malic enzyme appears to predominate before the addition of ADP and after its depletion. In the presence of cyanide, a membrane potential is generated when the alterntive pathway is operating. Cyanide-insensitive malate oxidation can be either coupled to the first phosphorylation site, sensitive to rotenone, or by-pass this site. In the absence of phosphate acceptor, malate oxidation is mainly carried out via malic enzyme and the alternative pathway. Experimental modification of the external mitochondrial environment in vitro (pH, NAD+, glutamade) results in changes in malate dehydrogenase and malic enzyme activities, which also modify cyanide resistance. It appears that a functional connection exists between malic enzyme and the alternative pathway via a rotenone-insensitive NADH dehydrogenase and that this pathway is responsible, in part, for nonphosphorylating respiratory activity during the climacteric.

  相似文献   

8.
9.
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.  相似文献   

10.
Bilal Amarneh 《BBA》2006,1757(12):1557-1560
Complex I of Escherichia coli is encoded by 13 consecutive genes, called the nuo operon. A chromosomal deletion of all nuo genes has been achieved by homologous recombination. A vector that encodes all of the nuo genes has been constructed, and it expresses a functional enzyme.  相似文献   

11.
Campylobacter jejuni is the leading cause of human food-borne bacterial gastroenteritis. The C. jejuni genome sequence predicts a branched electron transport chain capable of utilizing multiple electron acceptors. Mutants were constructed by disrupting the coding regions of the respiratory enzymes nitrate reductase (napA::Cm), nitrite reductase (nrfA::Cm), dimethyl sulfoxide, and trimethylamine N-oxide reductase (termed Cj0264::Cm) and the two terminal oxidases, a cyanide-insensitive oxidase (cydA::Cm) and cbb3-type oxidase (ccoN::Cm). Each strain was characterized for the loss of the associated enzymatic function in vitro. The strains were then inoculated into 1-week-old chicks, and the cecal contents were assayed for the presence of C. jejuni 2 weeks postinoculation. cydA::Cm and Cj0264c::Cm strains colonized as well as the wild type; napA::Cm and nrfA::Cm strains colonized at levels significantly lower than the wild type. The ccoN::Cm strain was unable to colonize the chicken; no colonies were recovered at the end of the experiment. While there appears to be a role for anaerobic respiration in host colonization, oxygen is the most important respiratory acceptor for C. jejuni in the chicken cecum.  相似文献   

12.
Cell-free extracts of Methanobacterium thermoautotrophicum were found to contain high activities of the following oxidoreductases (at 60°C): pyruvate dehydrogenase (coenzyme A acetylating), 275 nmol/min per mg of protein; α-ketoglutarate dehydrogenase (coenzyme A acylating), 100 nmol/min per mg; fumarate reductase, 360 nmol/min per mg; malate dehydrogenase, 240 nmol/min per mg; and glyceraldehyde-3-phosphate dehydrogenase, 100 nmol/min per mg. The kinetic properties (apparent Vmax and KM values), pH optimum, temperature dependence of the rate, and specificity for electron acceptors/donors of the different oxidoreductases were examined. Pyruvate dehydrogenase and α-ketoglutarate dehydrogenase were shown to be two separate enzymes specific for factor 420 rather than for nicotinamide adenine dinucleotide (NAD), NADP, or ferredoxin as the electron acceptor. Both activities catalyzed the reduction of methyl viologen with the respective α-ketoacid and a coenzyme A-dependent exchange between the carboxyl group of the α-ketoacid and CO2. The data indicate that the two enzymes are similar to pyruvate synthase and α-ketoglutarate synthase, respectively. Fumarate reductase was found in the soluble cell fraction. This enzyme activity coupled with reduced benzyl viologen as the electron donor, but reduced factor 420, NADH, or NADPH was not effective. The cells did not contain menaquinone, thus excluding this compound as the physiological electron donor for fumarate reduction. NAD was the preferred coenzyme for malate dehydrogenase, whereas NADP was preferred for glyceraldehyde-3-phosphate dehydrogenase. The organism also possessed a factor 420-dependent hydrogenase and a factor 420-linked NADP reductase. The involvement of the described oxidoreductases in cell carbon synthesis is discussed.  相似文献   

13.
The effects of fusaric acid, a phytotoxin produced byFusarium pathogens, on the metabolism of isolated maize root mitochondria and on maize seed germination and seedling growth were investigated. The phytotoxin inhibited basal and coupled respiration when succinate and α-ketoglutarate were the substrates. Coupled respiration dependent on NADH was inhibited, but basal respiration was not. Consistently, succinate cytochromec oxidoreductase activity was decreased whereas NADH cytochromec oxidoreductase was not affected. The ATPase activities of carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone stimulated mitochondria and of freeze-thawing disrupted mitochondria were inhibited. These results indicate that the phytotoxin impairs the respiratory activity of maize mitochondria by at least three mechanisms: (1) it inhibits the flow of electrons between succinate dehydrogenase and coenzyme Q, (2) it inhibits ATPase/ATP-synthase activity and (3) it possibly inhibits α-ketoglutarate dehydrogenase. Seed germination and seedling growth were also affected by fusaric acid with the most pronounced effect on root development. These effects can possibly contribute to the diseases ofFusarium- infected plants  相似文献   

14.
In aerobic microorganisms, the entry point of respiratory electron transfer is represented by the NADH:quinone oxidoreductase. The enzyme couples the oxidation of NADH with the reduction of quinone. In the type 1 NADH:quinone oxidoreductase (Ndh1), this reaction is accompanied by the translocation of cations, such as H+ or Na+. In Escherichia coli, cation translocation is accomplished by the subunit NuoL, thus generating membrane potential (Δψ). Some microorganisms achieve NADH oxidation by the alternative, nonelectrogenic type 2 NADH:quinone oxidoreductase (Ndh2), which is not cation translocating. Since these enzymes had not been described in Staphylococcus aureus, the goal of this study was to identify proteins operating in the NADH:quinone segment of its respiratory chain. We demonstrated that Ndh2 represents a NADH:quinone oxidoreductase in S. aureus. Additionally, we identified a hypothetical protein in S. aureus showing sequence similarity to the proton-translocating subunit NuoL of complex I in E. coli: the NuoL-like protein MpsA. Mutants with deletion of the nuoL-like gene mpsA and its corresponding operon, mpsABC (mps for membrane potential-generating system), exhibited a small-colony-variant-like phenotype and were severely affected in Δψ and oxygen consumption rates. The MpsABC proteins did not confer NADH oxidation activity. Using an Na+/H+ antiporter-deficient E. coli strain, we could show that MpsABC constitute a cation-translocating system capable of Na+ transport. Our study demonstrates that MpsABC represent an important functional system of the respiratory chain of S. aureus that acts as an electrogenic unit responsible for the generation of Δψ.  相似文献   

15.
《BBA》2019,1860(11):148080
The crystal structure of the enzyme previously characterized as a type-2 NADH:menaquinone oxidoreductase (NDH-2) from Thermus thermophilus has been solved at a resolution of 2.9 Å and revealed that this protein is, in fact, a coenzyme A-disulfide reductase (CoADR). Coenzyme A (CoASH) replaces glutathione as the major low molecular weight thiol in Thermus thermophilus and is maintained in the reduced state by this enzyme (CoADR). Although the enzyme does exhibit NADH:menadione oxidoreductase activity expected for NDH-2 enzymes, the specific activity with CoAD as an electron acceptor is about 5-fold higher than with menadione. Furthermore, the crystal structure contains coenzyme A covalently linked Cys44, a catalytic intermediate (Cys44-S-S-CoA) reduced by NADH via the FAD cofactor. Soaking the crystals with menadione shows that menadione can bind to a site near the redox active FAD, consistent with the observed NADH:menadione oxidoreductase activity. CoADRs from other species were also examined and shown to have measurable NADH:menadione oxidoreductase activity. Although a common feature of this family of enzymes, no biological relevance is proposed. The CoADR from T. thermophilus is a soluble homodimeric enzyme. Expression of the recombinant TtCoADR at high levels in E. coli results in a small fraction that co-purifies with the membrane fraction, which was used previously to isolate the enzyme wrongly identified as a membrane-bound NDH-2. It is concluded that T. thermophilus does not contain an authentic NDH-2 component in its aerobic respiratory chain.  相似文献   

16.
1. Aerobically grown yeast having a high activity of glyoxylate-cycle, citric acid-cycle and electron-transport enzymes was transferred to a medium containing 10% glucose. After a lag phase of 30min. the yeast grew exponentially with a mean generation time of 94min. 2. The enzymes malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase and NADH–cytochrome c oxidoreductase lost 45%, 17%, 27% and 46% of their activity respectively during the lag phase. 3. When growth commenced pyruvate kinase, pyruvate decarboxylase, alcohol dehydrogenase, glutamate dehydrogenase (NADP+-linked) and NADPH–cytochrome c oxidoreductase increased in activity, whereas aconitase, isocitrate dehydrogenase (NAD+- and NADP+-linked), α-oxoglutarate dehydrogenase, fumarase, malate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, NADH oxidase, NADPH oxidase, cytochrome c oxidase, glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, isocitrate lyase and glucose 6-phosphate dehydrogenase decreased. 4. During the early stages of growth the loss of activity of aconitase, α-oxoglutarate dehydrogenase, fumarase and glucose 6-phosphate dehydrogenase could be accounted for by dilution by cell division. The lower rate of loss of activity of isocitrate dehydrogenase (NAD+- and NADP+-linked), glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, NADPH oxidase and cytochrome c oxidase implies their continued synthesis, whereas the higher rate of loss of activity of malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and NADH oxidase means that these enzymes were actively removed. 5. The mechanisms of selective removal of enzyme activity and the control of the residual metabolic pathways are discussed.  相似文献   

17.
The nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (l-glutamate:NAD+ oxidoreductase, EC 1.4.1.2) of Chlorella sorokiniana was purified 1,000-fold to electrophoretic homogeneity. The native enzyme was shown to have a molecular weight of 180,000 and to be composed of four identical subunits with a molecular weight of 45,000. The N-terminal amino acid was determined to be lysine. The pH optima for the aminating and deaminating reactions were approximately 8 and 9, respectively. The Km values for α-ketoglutarate, NADH, NH4+, NAD+, and l-glutamate were 2 mm, 0.15 mm, 40 mm, 0.15 mm, and 60 mm, respectively. Whereas the Km for α-ketoglutarate and l-glutamate increased 10-fold, 1 pH unit above or below the pH optima for the aminating or deaminating reactions, respectively, the Km values for NADH and NAD+ were independent of change in pH from 7 to 9.6. By initial velocity, product inhibition, and equilibrium substrate exchange studies, the kinetic mechanism of enzyme was shown to be consistent with a bi uni uni uni ping-pong addition sequence. Although this kinetic mechanism differs from that reported for any other glutamate dehydrogenase, the chemical mechanism still appears to involve the formation of a Schiff base between α-ketoglutarate and an ε-amino group of a lysine residue in the enzyme. The physical, chemical, and kinetic properties of this enzyme differ greatly from those reported for the NH4+-inducible glutamate dehydrogenase in this organism.  相似文献   

18.
A procedure was described for preparing intact mitochondria from spinach (Spinacia oleracea L.) leaves. These mitochondria oxidized succinate, malate, pyruvate, α-ketoglutarate, and NADH with good respiratory control and ADP/O ratios comparable to those observed with mitochondria from other plant tissues. Glycine was oxidized by the preparations. This oxidation linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport and phosphorylation inhibitors.  相似文献   

19.
Glutamate Synthetase in Developing Cotyledons of Pisum sativum   总被引:8,自引:6,他引:2       下载免费PDF全文
Glutamate synthetase (glutamine[amide]:α ketoglutarate amino transferase oxidoreductase) activity has been demonstrated in the developing cotyledons of Pisum sativum L. cv. Burpeeana. The enzyme appears to be soluble and is specific for glutamine as amide donor. The enzyme activity is greater with NADH than with NADPH as electron donor.  相似文献   

20.
A.P. Singh  P.D. Bragg 《BBA》1975,396(2):229-241
Escherichia coli SASX76 does not form cytochromes unless supplemented with 5-aminolevulinic acid. It can grow anaerobically on glycerol and dl-glycerol 3-phosphate in the absence of 5-aminolevulinic acid with fumarate but not with nitrate as the terminal electron acceptor. Cytochrome-independent NADH oxidase, glycerol 3-phosphate- and NADH-fumarate oxidoreductase activities are induced by anaerobic growth on a glycerol-fumarate medium. The pathway of electrons from substrate to fumarate involves menaquinone. The NADH-fumarate oxidoreductase and cytochrome-independent NADH oxidase systems are inhibited by piericidin A, 2-heptyl-4-hydroxyquinoline N-oxide, and iron chelating agents. Both systems can energize the membrane particles as indicated by quenching of atebrin fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号