首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Herold  K Kirschner 《Biochemistry》1990,29(7):1907-1913
The unfolding and dissociation of the dimeric enzyme aspartate aminotransferase (D) from Escherichia coli by guanidine hydrochloride have been investigated at equilibrium. The overall process was reversible, as judged from almost complete recovery of enzymic activity after dialysis of 0.7 mg of denatured protein/mL against buffer. Unfolding and dissociation were monitored by circular dichroism and fluorescence spectroscopy and occurred in three separate phases: D in equilibrium 2M in equilibrium 2M* in equilibrium 2U. The first transition at about 0.5 M guanidine hydrochloride coincided with loss of enzyme activity. It was displaced toward higher denaturant concentrations by the presence of either pyridoxal 5'-phosphate or pyridoxamine 5'-phosphate and toward lower denaturant concentrations by decreasing the protein concentration. Therefore, bound coenzyme stabilizes the dimeric state, and the monomer (M) is inactive because the shared active sites are destroyed by dissociation of the dimer. M was converted to M* and then to the fully unfolded monomer (U) in two subsequent transitions. M* was stable between 0.9 and 1.1 M guanidine hydrochloride and had the hydrodynamic radius, circular dichroism, and fluorescence of a monomeric, compact "molten globule" state.  相似文献   

2.
The effects of various concentrations of urea and guanidine hydrochloride on enzyme activity and on subunit association were determined. Incubation of thymidylate synthetase with buffered solutions of 3M to 3.5M guanidine hydrochloride or 5 M to 6 M urea resulted in the loss of about 90% of the enzyme activity. Under these denaturing conditions a red shift of the fluorescence emission maximum from 340 nm to 351 nm was observed together with a significant decrease in the relative fluorescence intensity of the protein. Studies at both 4 degrees C and 25 degrees C indicated that the enzyme was in the dimer form in 2 M guanidine hydrochloride but was dissociated into monomers in concentrations of this denaturant of 3 M and above. Although only monomeric species were evident at 4 degrees C in 6 M urea, at 25 25 degrees C this denaturant caused protein aggregation which increased with decreasing phosphate buffer concentration. Enzyme (5 mg/ml) in 0.5 M potassium phosphate buffer, pH 6.8, containing 4 M guanidine hydrochloride gave a minimum S20, w value of 1.22S at 25 degrees C. Sedimentation behavior of the native enzyme in the range of 5 to 20 mg/ml was only slightly concentration-dependent (4.28 S to 4.86 S) but extensive aggregation occurred above 20 mg/ml.  相似文献   

3.
The denaturation of triose phosphate isomerase (TIM) from Saccharomyces cerevisiae by guanidine hydrochlorids at pH 7.2 has been monitored by NMR spectroscopy in conjunction with optical spectroscopy. In the absence of denaturant, the hydrodynamic radius of 29.6(+/-0.25) A and the substantial chemical shift dispersion evident in the NMR spectrum are consistent with the highly structured dimeric native state of the protein. On the addition of 2. 2 M guanidine hydrochloride the effective hydrodynamic radius increases to 51.4(+/-0.43) A, consistent with that anticipated for the polypeptide chain in a highly unstructured random coil state. In 1.1 M guanidine hydrochloride, however, the effective hydrodynamic radius is 24.0(+/-0.25) A, a value substantially decreased relative to that of the native dimeric state but very close to that anticipated for a monomeric species with native-like compaction (23. 5 A). The lack of chemical shift dispersion indicates, however, that few tertiary interactions persist within this species. Far UV CD and intrinsic fluorescence measurements show that this compact intermediate retains significant secondary structure and that on average the fluorophores are partially excluded from solvent. Such a species could be important in the formation of dimeric TIM from its unfolded state.  相似文献   

4.
The arginine (Arg)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, native polyacrylamide gel electrophoresis and size exclusion chromatography (SEC). The results showed that Arg caused inactivation and unfolding of CK, but there was no aggregation during CK denaturation. The kinetics of CK unfolding followed a one-phase process. At higher concentrations of Arg (>160 mM), the CK dimers were fully dissociated, the alkali characteristic of Arg mainly led to the dissociation of dimers, but not denaturation effect of Arg's guanidine groups on CK. The inactivation of CK occurred before noticeable conformational changes of the whole molecules. KCl induced monomeric and dimeric molten globule-like states of CK denatured by Arg. These results suggest that as a protein denaturant, the effect of Arg on CK differed from that of guanidine and alkali, its denaturation for protein contains the double effects, which acts not only as guanidine hydrochloride but also as alkali. The active sites of CK have more flexibility than the whole enzyme conformation. Monomeric and dimeric molten globule-like states of CK were formed by the salt inducing in 160 and 500 mM Arg H(2)O solutions, respectively. The molten globule-like states indicate that monomeric and dimeric intermediates exist during CK folding. Furthermore, these results also proved the orderly folding model of CK.  相似文献   

5.
Baez M  Cabrera R  Guixé V  Babul J 《Biochemistry》2007,46(20):6141-6148
Escherichia coli phosphofructokinase-2 (Pfk-2) is an oligomeric enzyme characterized by two kinds of interfaces: a monomer-monomer interface, critical for enzymatic activity, and a dimer-dimer interface formed upon tetramerization due to allosteric binding of MgATP. In this work, Pfk-2 was denatured by guanidine hydrochloride (GdnHCl) and the impact of ligand binding on the unfolding pathway of the dimeric and the tertrameric forms of the enzyme was examined. The unligated dimeric form unfolds and dissociates from 0.15 to 0.8 M GdnHCl without the accumulation of native monomers, as indicated by circular dichroism and size exclusion chromatography measurements. However, a monomeric intermediate with an expanded volume and residual secondary structure accumulates above 0.8 M GdnHCl. The dimeric fructose-6-P-enzyme complex shows a shift in the simultaneous dissociation and unfolding process to elevated GdnHCl concentrations (from 0.8 to 1.4 M) together with the expulsion of the ligand detected by intrinsic fluorescence measurements. The unfolding pathway of the tetrameric MgATP-enzyme complex shows the accumulation of a tetrameric intermediate with altered fluorescence properties at about 0.4 M GdnHCl. Above this concentration a sharp transition from tetramers to monomers, without the accumulation of either compact dimers or monomers, was detected by light scattering measurements. Indeed, the most populated species was a partially unfolded monomer about 0.7 M GdnHCl. On the basis of these results, we suggest that the subunit contacts are critical for the maintenance of the overall structure of Pfk-2 and for the binding of ligands, explaining the reported importance of the dimeric state for enzymatic activity.  相似文献   

6.
R Hermann  R Jaenicke  N C Price 《Biochemistry》1985,24(8):1817-1821
The reconstitution of the tetrameric phosphoglycerate mutase from bakers' yeast after denaturation in guanidine hydrochloride has been studied. When assays are performed in the presence of trypsin, it is found that reactivation parallels the regain of tetrameric structure. However, in the absence of trypsin, the regain of activity is more rapid, suggesting that monomeric and dimeric intermediates possess partial activity (35% of the value of native enzyme) which is sensitive to trypsin. When reconstitution is studied in the presence of substrates, it is again found that monomeric and dimeric intermediates possess 35% activity. Under these latter conditions, the activity of the monomer but not of the dimer is sensitive to trypsin.  相似文献   

7.
Superoxide dismutases are enzymes that protect biological systems against oxidative damage caused by superoxide radicals. In this paper, a detailed characterization is presented on the stability of SmSOD, the dimeric cambialistic superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans, towards temperature and guanidine hydrochloride. Thermal and chemical denaturations were investigated by means of circular dichroism, fourth-derivative UV spectroscopy and fluorescence measurements. Data indicate that SmSOD is endowed with a significant thermostability and that both its thermal and guanidine hydrochloride-induced unfolding processes occur through a three-state model, characterized by a catalytically active dimeric intermediate species. To our knowledge, SmSOD is the smallest known dimeric protein that populates a well-structured active dimeric rather than a monomeric intermediate during unfolding processes.  相似文献   

8.
The denaturation of subtilisin BPN' (EC 3.4.21.14) in guanidine hydrochloride was studied in order to find possible reasons for the exceptional stability of this enzyme against the action of denaturing agents including guanidine hydrochloride. Chemically modified subtilisins, i.e., phenylmethanesulfonylsubtilisin and thio-subtilisin, were completely denatured in 2 M guanidine hydrochloride at pH 7 without autolysis but they were stable in 0.5 M guanidine hydrochloride for at least 60 h. On the other hand, once completely denatured, the subtilisins remained inactive and in highly unfolded conformations for 60 h or longer after transfer into 0.5 M guanidine solution at pH 7 or 9. No enzymatic activity was regained when the guanidine concentration was lowered to almost zero. We concluded from these and other results described in this paper that this enzyme was thermodynamically unstable in 2 M guanidine hydrochloride at 20 degrees C and at pH 7. We wish to point out the possibility that the denaturation of this enzyme could indeed be irreversible.  相似文献   

9.
G R Parr  G G Hammes 《Biochemistry》1976,15(4):857-862
The kinetics of dissociation and reassembly of rabbit skeletal muscle phosphofructokinase has been studied using fluorescence, stopped-flow fluorescence and enzyme activity measurements. The dissociation of the fully active tetramer in 0.8 M guanidine hydrochloride (0.1 M potassium phosphate, pH 8.0) occurs in three kinetic phases as measured by changes in the protein fluorescence emission intensity: dissociation of tetramer to dimer with a relaxation time of a few milliseconds; dissociation of dimer to monomer with a relaxation time of a few seconds; and a conformational change of the monomer with a relaxation time of a few minutes. All three phases exhibit first-order kinetics; ATP (0.05 mM) retards the second step but does not influence the rate of the other two processes. The rate of the second process increases with decreasing temperature; this may be due to the involvement of hydrophobic interactions in the stabilization of the dimeric enzyme. A further unfolding of the monomer polypeptide chain occurs at higher guanidine concentrations, and the relaxation time associated with this process was found to be 83 ms in 2.5 M guanidine, 0.1 M potassium phosphate (pH 8.0) at 23 degrees C. The phosphofructokinase monomers were reassembled from 0.8 M guanidine chloride by 1:10 dilution of the guanidine hydrochloride concentration and yielded a protein with 70-94% of the original activity, depending on the protein concentration. The reactivation process follows second-order kinetics; ATP (5 mM) increases the rate of reactivation without altering the reaction order, while fructose 6-phosphate does not influence the rate of reaction. The rate-determining step is probably the association of monomers to form the dimer.  相似文献   

10.
Dipeptidyl aminopeptidase IV, a glycoprotein from pig kidney   总被引:3,自引:0,他引:3  
Dipeptidyl aminopeptidase IV was purified 350 fold from pig kidney by chromatographic procedures including affinity chromatography with conjugates of Gly-Pro linked to Sepharose 4.B. Purified enzyme existed in a dimeric form as determined by sodium dodecyl sulfate polyacrylamide-gel electrophoresis using dimethyl suberimidate (a cross-linking reagent). The molecular weight of the subunit was estimated to be 100 000 by gel filtration with 6 M guanidine hydrochloride and to be 94 000 based on analysis of N-terminal residue (dinitrophenyl-serine). The amino acid composition of the purified enzyme was also determined. The enzyme contained 18.3% of carbohydrate consisting of mannose, galactose, fucose, glucosamine and sialic acid. The enzyme desialized with sialidase was found to still possess full enzyme activity.  相似文献   

11.
The equilibrium unfolding of dimeric yeast glutathione reductase (GR) by guanidine hydrochloride (GdnHCl) was investigated. Unfolding was monitored by a variety of techniques, including intrinsic fluorescence emission, anisotropy and iodide quenching measurements, far-ultraviolet circular dichroism and thiol reactivity measurements. At 1 M GdnHCl, one thiol group of GR became accessible to modification with 5,5′-dithiobis-(2-nitrobenzoic) acid (DTNB), whereas no changes could be detected in the spectroscopic properties (fluorescence, circular dichroism) of the protein. Between 2 and 3 M GdnHCl, two partially folded intermediate states possessing flexible tertiary structures (revealed by fluorescence data) but compact secondary structures (as indicated by circular dichroism measurements) were identified. The quaternary structure of GR in the presence of GdnHCl was also investigated by size-exclusion liquid chromatography. These results indicated the presence of an expanded predissociated dimer at 2.5 M GdnHCl and partially folded monomers at 3 M GdnHCl. Taken together, these results suggest the existence of two molten-globule-like intermediate species (one dimeric and one monomeric) in the unfolding of GR. The results are discussed in terms of the mechanism of GR folding and dimerization.  相似文献   

12.
Kinetics of guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular mass was investigated with enzyme activity measurements, capacity for binding an external hydrophobic probe, 1-anilinonaphtalene-8-sulfonate (ANS), accessibility of thiols to reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 2-(4'-maleimidylanilino)naphthalene-6-sulfonate (MIANS) and ability to bind Congo red dye. Kinetic analysis was performed to describe a possible mechanism of hPAP unfolding and dissociation that leads to generation of an inactive monomeric intermediate that resembles, in solution of 1.25 M GdnHCl pH 7.5, at 20 degrees C, in equilibrium, a molten globule state. The reaction of hPAP inactivation in 1.25 M GdnHCl followed first order kinetics with the reaction rate constant 0.0715 +/- 0.0024 min(-1) . The rate constants of similar range were found for the pseudo-first-order reactions of ANS and Congo red binding: 0.0366 +/- 0.0018 min(-1) and 0.0409 +/- 0.0052 min(-1), respectively. Free thiol groups, inaccessible in the native protein, were gradually becoming, with the progress of unfolding, exposed for the reactions with DTNB and MIANS, with the pseudo-first-order reaction rate constants 0.327 +/- 0.014 min(-1) and 0.216 +/- 0.010 min(-1), respectively. The data indicated that in the course of hPAP denaturation exposure of thiol groups to reagents took place faster than the enzyme inactivation and exposure of the protein hydrophobic surface. This suggested the existence of a catalytically active, partially unfolded, but probably dimeric kinetic intermediate in the process of hPAP unfolding. On the other hand, the protein inactivation was accompanied by exposure of a hydrophobic, ANS-binding surface, and with an increased capacity to bind Congo red. Together with previous studies these results suggest that the stability of the catalytically active conformation of the enzyme depends mainly on the dimeric structure of the native hPAP.  相似文献   

13.
Dimeric and monomeric proteins containing dihydrodiol dehydrogenase and aldehyde reductase activities were purified from pig lens. The dimeric enzyme of Mr 65,000 specifically oxidized the trans-dihydrodiols of naphthalene and benzene with NADP+ as a strict cofactor, and reduced alpha-diketones, aromatic aldehydes and glyceraldehyde with NADPH as a cofactor. The monomeric enzyme of Mr 35,000, although identical with aldose reductase, oxidized the trans-dihydrodiol of naphthalene at a pH optimum of 7.6. These results suggest that the two enzymes are involved in the pathogenesis of naphthalene cataract.  相似文献   

14.
Reversible denaturation of the gene V protein of bacteriophage f1   总被引:7,自引:0,他引:7  
H Liang  T C Terwilliger 《Biochemistry》1991,30(11):2772-2782
The guanidine hydrochloride (GuHCl)-induced denaturation of the gene V protein of bacteriophage f1 has been studied, using the chemical reactivity of a cysteine residue that is buried in the folded protein and the circular dichroism (CD) at 211 and 229 nm as measures of the fraction of polypeptide chains in the folded form. It is found that this dimeric protein unfolds in a single cooperative transition from a folded dimer to two unfolded monomers. A folded, monomeric form of the gene V protein was not detected at equilibrium. The kinetics of unfolding of the gene V protein in 3 M GuHCl and the refolding in 2 M GuHCl are also consistent with a transition between a folded dimer and two unfolded monomers. The GuHCl concentration dependence of the rates of folding and unfolding suggests that the transition state for folding is near the folded conformation.  相似文献   

15.
Equilibrium studies of guanidine hydrochloride (GdnHCl)-induced unfolding of dimeric arginine kinase (AK) from sea cucumber have been performed by monitoring by enzyme activity, intrinsic protein fluorescence, circular dichroism (CD), 1-anilinonaphthalene-8sulfonate (ANS) binding, size-exclusion chromatography and glutaraldehyde cross-linking. The unfolding is a multiphasic process involving at least two dimeric intermediates. The first intermediate, I1, which exists at 0-0.4 M GdnHCl, is a compact inactive dimer lacking partial global structure, while the second dimeric intermediate, I2, formed at 0.5-2.0 M GdnHCl, possesses characteristics similar to the globular folding intermediates described in the literature. The whole unfolding process can be described as follows: (1) inactivation and the appearance of the dimeric intermediate I1; (2) sudden unwinding of I1 to another dimeric intermediate, I2; (3) dissociation of dimeric intermediate I2 to monomers U. The refolding processes initiated by rapid dilution in renaturation buffers indicate that denaturation at low GdnHCl concentrations (below 0.4 M GdnHCl) is reversible and that there seems to be an energy barrier between the two intermediates (0.4-0.5 M GdnHCl), which makes it difficult for AK denatured at high GdnHCl concentrations (above 0.5 M) to reconstitute and regain its catalytic activity completely.  相似文献   

16.
The denaturation of the dimeric enzyme glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides by guanidine hydrochloride has been studied using enzymatic activity, intrinsic fluorescence, circular dichroism, and light scattering measurements. Equilibrium experiments at 25 degrees C revealed that between 0.9 and 1.2 M denaturant the enzyme underwent a conformational change, exposing tryptophan residues to solvent, with some loss of secondary structure and a complete loss of enzymatic activity but without dimer dissociation to subunits. This inactive, partially unfolded, dimeric intermediate was susceptible to slow aggregation, perhaps due to exposure of 'sticky' hydrophobic stretches of the polypeptide chain. A second equilibrium transition, reflecting extensive unfolding and dimer dissociation, occurred only at denaturant concentrations above 1.4 M. Kinetics experiments demonstrated that in the denaturant concentration range of 1.7-1.9 M the fluorescence change occurred in two distinct steps. The first step involved a large, very rapid drop in fluorescence whose rate was strongly dependent on the denaturant concentration. This was followed by a small, relatively slow rise in the emission intensity, the rate of which was independent of denaturant concentration. Enzymatic activity was lost with a denaturant-concentration-dependent rate, which was approx. 3-times slower than the rate of the first step in fluorescence change. A denaturation mechanism incorporating several unfolding intermediates and which accounts for all the above results is presented and discussed. While the fully unfolded enzyme regained up to 55% of its original activity upon dilution of denaturant to a concentration that would be expected to support native enzyme, denaturation intermediates were able to reactivate only minimally and in fact were found to aggregate and precipitate out of solution.  相似文献   

17.
The denaturation of dimeric rabbit muscle phosphoglucose isomerase in guanidine hydrochloride occurs in two discrete steps consisting of partial unfolding followed by subunit dissociation. In 3.5 to 4.5 m guanidine hydrochloride the enzyme forms a stable denaturation intermediate. Formation of this intermediate abolishes catalytic activity, shifts the protein fluorescence emission maximum from 332 to 345 nm, exposes all of the unavailable sulfhydryl groups, and decreases the s20,w from 6.8 to 4.6 S. The intermediate dissociates into fully unfolded polypeptide chains with further increases in the concentration of the denaturant. The fluorescence maximum shifts to 352 nm and the s20,w of the denatured monomer is 1.6 S. From the equilibrium constant for subunit association, 3 × 104M?1, in 4.7 m guanidine hydrochloride, the apparent free energy of association is estimated to be ?6 kcal mol?1. Reconstitution of the enzyme protein takes place by the reversal of the steps observed upon denaturation. The denatured monomers refold and associate to reform the dimeric intermediate which then anneals to yield the intact enzyme molecule.  相似文献   

18.
It was shown that denaturation of beef liver glutamate dehydrogenase under the action of guanidine hydrochloride results in a diplacement of the protein fluorescence maximum from 332 to 349 nm, in a decrease of optical rotation of the protein at 233 nm and in an appearance of negative bands in the difference absorbance spectrum with extrema at 279 and 287 nm. The transition of native enzyme into a denaturated state is observed within a narrow interval of guanidine hydrochloride concentrations. The middle point of the transition corresponds to approximately 2,2 M guanidine hydrochloride. The inactivation kinetics for glutamate dehydrogenase coincide with those of the enzyme spectral properties alterations due to denaturation. The attempts at renaturation of glutamate dehydrogenase by diluting the denaturated enzyme solution or by a dialysis against a buffer solution were unsuccessful.  相似文献   

19.
The unfolding of triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) induced by guanidine hydrochloride (GdnHCl) was characterized. In contrast to other TIMs, where unfolding is a two or three state process, TbTIM showed two intermediates. The solvent exposure of different regions of the protein in the unfolding process was characterized spectroscopically with mutant proteins in which tryptophans (W) were changed to phenlylalanines (F). The midpoints of the transitions measured by circular dichroism, intrinsic fluorescence, and catalytic activity, as well as the increase in 1-aniline 8-naphthalene sulfonate fluorescence, show that the native state was destabilized in the W12F and W12F/W193F mutants, relative to the wild-type enzyme. Using the hydrodynamic profile for the unfolding of a monomeric TbTIM mutant (RMM0-1TIM) measured by size-exclusion chromatography as a standard, we determined the association state of these intermediates: D*, a partially expanded dimer, and M*, a partially expanded monomeric intermediate. High-molecular-weight aggregates were also detected. At concentrations over 2.0 M GdnHCl, the hydrodynamic properties of TbTIM and RMM0-1TIM are the same, suggesting that the dimeric intermediate dissociates and the unfolding proceeds through the denaturation of an expanded monomeric intermediate. The analysis of the denaturation process of the TbTIM mutants suggests a sequence for the gradual exposure of W residues: initially the expansion of the native dimer to form D* affects the environments of W12 and W159. The dissociation of D* to M* and further unfolding of M* to U induces the exposure of W170. The role of protein concentration in the formation of intermediates and aggregates is discussed considering the irreversibility of this unfolding process.  相似文献   

20.
W Teschner  M C Serre  J R Garel 《Biochimie》1990,72(6-7):403-406
The leucine residue at position 178 in the major allosteric phosphofructokinase from Escherichia coli has been replaced by a tryptophan using site-directed mutagenesis. Transformation by the mutated gene of pfk- bacteria results into the expression of a pfk+ phenotype and the production of an active enzyme. The modified protein has been purified and its fluorescence properties show that it contains 2 tryptophan residues, the original Trp 311 and the new Trp 178. During unfolding of the protein by guanidine hydrochloride, the changes in the fluorescence of these 2 residues take place at different steps: Trp 311 becomes exposed to solvent when the dimeric form dissociates into monomers, while Trp 178 is exposed only when a folded chain loses its tertiary structure. The mutant enzyme is stabilized by its substrate fructose-6-phosphate against denaturation induced by heat or guanidine hydrochloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号