首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosphingolipids are essential components of eukaryotic cell membranes and are involved in the regulation of cell growth, differentiation, and neoplastic transformation. In this work, we have modulated glycosphingolipid levels in CHO cells stably expressing the human serotonin1A receptor by inhibiting the activity of glucosylceramide synthase using (±)‐threo‐1‐phenyl‐2‐decanoylamino‐3‐morpholino‐1‐propanol (PDMP), a commonly used inhibitor of the enzyme. Serotonin1A receptors belong to the family of G‐protein‐coupled receptors and are implicated in the generation and modulation of various cognitive, behavioral, and developmental functions. We explored the function of the serotonin1A receptor under glycosphingolipid‐depleted condition by monitoring ligand‐binding activity and G‐protein coupling of the receptor. Our results show that ligand binding of the receptor is impaired under these conditions although the efficiency of G‐protein coupling remains unaltered. The expression of the receptor at the cell membrane appears to be reduced. Interestingly, our results show that the effect of glycosphingolipids on ligand binding caused by metabolic depletion of these lipids is reversible. These novel results demonstrate that glycosphingolipids are necessary for the function of the serotonin1A receptor. We discuss possible mechanisms of specific interaction of glycosphingolipids with the serotonin1A receptor that could involve the proposed ‘sphingolipid‐binding domain’.  相似文献   

2.
Many psychotropic substances used either for medications or illicit recreational purposes are able to produce an increase in extracellular serotonin (5HT) in the CNS. 5HT is well known to improve mood; however, only when the levels of its release are in an appropriate range. Excessive 5HT is harmful, and will generally result in serotonin syndrome. To date, clinical diagnosis of serotonin syndrome relies exclusively on observation of symptoms because of a lack of available laboratory tests. The goal of this study was to characterize the onset of the syndrome using laboratory settings to determine excessive 5HT‐evoked neurological abnormalities. Experiments were carried out in rats with the syndrome being elicited by three groups of 5HT‐promoting drugs: (i) (±)‐3,4‐methylenedioxymethamphetamine (MDMA); (ii) a combination of the monoamine oxidase inhibitor clorgyline with the 5HT precursor 5‐hydroxytryptophan; (iii) clorgyline combined with the serotonin‐selective reuptake inhibitor paroxetine. The onset of the syndrome was characterized by electroencephalography (EEG), tremor, and brain/plasma 5HT tests. We found that a mild syndrome was associated with reduced EEG amplitudes while a severe syndrome strongly with seizure‐like EEG activity and increased tremor activity. The occurrence of the syndrome was confirmed with microdialysis, showing excessive 5HT efflux in brain dialysate and the increased concentration of unbound 5HT in the plasma. Our findings suggest that the syndrome onset can be revealed with EEG recording, measurements of tremor activity and changes of unbound 5HT concentration in the plasma.  相似文献   

3.
The biogenic amine serotonin ( 5‐hydroxytryptamine, 5‐HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G‐protein‐coupled receptors. Five 5‐HT receptor subtypes have been reported in Drosophila that share high similarity with mammalian 5‐HT1A, 5‐HT1B, 5‐HT2A, 5‐HT2B, and 5‐HT7 receptors. We isolated a cDNA (Pr5‐HT8) from larval Pieris rapae, which shares relatively low similarity to the known 5‐HT receptor classes. After heterologous expression in HEK293 cells, Pr5‐HT8 mediated increased [Ca2+]i in response to low concentrations (< 10 nM) of 5‐HT. The receptor did not affect [cAMP]i even at high concentrations (> 10 μM) of 5‐HT. Dopamine, octopamine, and tyramine did not influence receptor signaling. Pr5‐HT8 was also activated by various 5‐HT receptor agonists including 5‐methoxytryptamine, (±)‐8‐Hydroxy‐2‐(dipropylamino) tetralin, and 5‐carboxamidotryptamine. Methiothepin, a non‐selective 5‐HT receptor antagonist, activated Pr5‐HT8. WAY 10635, a 5‐HT1A antagonist, but not SB‐269970, SB‐216641, or RS‐127445, inhibited 5‐HT‐induced [Ca2+]i increases. We infer that Pr5‐HT8 represents the first recognized member of a novel 5‐HT receptor class with a unique pharmacological profile. We found orthologs of Pr5‐HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee or parasitoid wasps. This is likely to be an invertebrate‐specific receptor because there were no similar receptors in mammals.

  相似文献   


4.
5.
The neurotransmitter serotonin underlies many of the brain's functions. Understanding serotonin neurochemistry is important for improving treatments for neuropsychiatric disorders such as depression. Antidepressants commonly target serotonin clearance via serotonin transporters and have variable clinical effects. Adjunctive therapies, targeting other systems including serotonin autoreceptors, also vary clinically and carry adverse consequences. Fast scan cyclic voltammetry is particularly well suited for studying antidepressant effects on serotonin clearance and autoreceptors by providing real‐time chemical information on serotonin kinetics in vivo. However, the complex nature of in vivo serotonin responses makes it difficult to interpret experimental data with established kinetic models. Here, we electrically stimulated the mouse medial forebrain bundle to provoke and detect terminal serotonin in the substantia nigra reticulata. In response to medial forebrain bundle stimulation we found three dynamically distinct serotonin signals. To interpret these signals we developed a computational model that supports two independent serotonin reuptake mechanisms (high affinity, low efficiency reuptake mechanism, and low affinity, high efficiency reuptake system) and bolsters an important inhibitory role for the serotonin autoreceptors. Our data and analysis, afforded by the powerful combination of voltammetric and theoretical methods, gives new understanding of the chemical heterogeneity of serotonin dynamics in the brain. This diverse serotonergic matrix likely contributes to clinical variability of antidepressants.

  相似文献   


6.
We recently found severe noradrenaline deficits throughout the thalamus of patients with Parkinson's disease [C. Pifl, S. J. Kish and O. Hornykiewicz Mov Disord. 27, 2012, 1618.]. As this noradrenaline loss was especially severe in nuclei of the motor thalamus normally transmitting basal ganglia motor output to the cortex, we hypothesized that this noradrenaline loss aggravates the motor disorder of Parkinson's disease. Here, we analysed noradrenaline, dopamine and serotonin in motor (ventrolateral and ventroanterior) and non‐motor (mediodorsal, centromedian, ventroposterior lateral and reticular) thalamic nuclei in MPTP‐treated monkeys who were always asymptomatic; who recovered from mild parkinsonism; and monkeys with stable, either moderate or severe parkinsonism. We found that only the symptomatic parkinsonian animals had significant noradrenaline losses specifically in the motor thalamus, with the ventroanterior motor nucleus being affected only in the severe parkinsonian animals. In contrast, the striatal dopamine loss was identical in both the mild and severe symptom groups. MPTP‐treatment had no significant effect on noradrenaline in non‐motor thalamic nuclei or dopamine and serotonin in any thalamic subregion. We conclude that in the MPTP primate model, loss of noradrenaline in the motor thalamus may also contribute to the clinical expression of the parkinsonian motor disorder, corroborating experimentally our hypothesis on the role of thalamic noradrenaline deficit in Parkinson's disease.  相似文献   

7.
8.
3,4‐Methylenedioxymethamphetamine (MDMA, ecstasy) use may have long‐term neurotoxic effects. In this study, positron emission tomography with the tracer alpha‐[11C]methyl‐l ‐tryptophan (11C‐AMT) was used to compare human brain serotonin (5‐HT) synthesis capacity in 17 currently drug‐free MDMA polydrug users with that in 18 healthy matched controls. Gender differences and associations between regional 11C‐AMT trapping and characteristics of MDMA use were also examined. MDMA polydrug users exhibited lower normalized 11C‐AMT trapping in pre‐frontal, orbitofrontal, and parietal regions, relative to controls. These differences were more widespread in males than in females. Increased normalized 11C‐AMT trapping in MDMA users was also observed, mainly in the brainstem and in frontal and temporal areas. Normalized 11C‐AMT trapping in the brainstem and pre‐frontal regions correlated positively and negatively, respectively, with greater lifetime accumulated MDMA use, longer durations of MDMA use, and shorter time elapsed since the last MDMA use. Although the possibility of pre‐existing 5‐HT alterations pre‐disposing people to use MDMA cannot be ruled out, regionally decreased 5‐HT synthesis capacity in the forebrain could be interpreted as neurotoxicity of MDMA on distal (frontal) brain regions. On the other hand, increased 5‐HT synthesis capacity in the raphe and adjacent areas could be due to compensatory mechanisms.

  相似文献   


9.
Plasma serotonin levels and the platelet serotonin transporter   总被引:1,自引:0,他引:1  
Serotonin (5HT) is a platelet-stored vasoconstrictor. Altered concentrations of circulating 5HT are implicated in several pathologic conditions, including hypertension. The actions of 5HT are mediated by different types of receptors and terminated by a single 5HT transporter (SERT). Therefore, SERT is a major mechanism that regulates plasma 5HT levels to prevent vasoconstriction and thereby secure a stable blood flow. In this study, the response of platelet SERT to the plasma 5HT levels was examined within two models: (i) in subjects with chronic hypertension or normotension; (ii) on platelets isolated from normotensive subjects and pretreated with 5HT at various concentrations. The platelet 5HT uptake rates were lower during hypertension due to a decrease in Vmax with a similar Km; also, the decrease in Vmax was primarily due to a decrease in the density of SERT on the platelet membrane, with no change in whole cell expression. Additionally, while the platelet 5HT content decreased 33%, the plasma 5HT content increased 33%. Furthermore, exogenous 5HT altered the 5HT uptake rates by changing the density of SERT molecules on the plasma membrane in a biphasic manner. Therefore, we hypothesize that in a hypertensive state, the elevated plasma 5HT levels induces a loss in 5HT uptake function in platelets via a decrease in the density of SERT molecules on the plasma membrane. Through the feedback effect of this proposed mechanism, plasma 5HT controls its own concentration levels by modulating the uptake properties of platelet SERT.  相似文献   

10.
G Rudnick  S C Wall 《Biochemistry》1992,31(29):6710-6718
p-Chloroamphetamine (PCA) interacts with serotonin transporters in two membrane vesicle model systems by competing with serotonin for transport and stimulating efflux of accumulated serotonin. In plasma membrane vesicles isolated from human platelets, PCA competes with [3H]imipramine for binding to the serotonin transporter with a KD of 310 nM and competitively inhibits serotonin transport with a KI of 4.8 nM. [3H]Serotonin efflux from plasma membrane vesicles is stimulated by PCA in a Na(+)-dependent and imipramine-sensitive manner characteristic of transporter-mediated exchange. In membrane vesicles isolated from bovine adrenal chromaffin granules, PCA competitively inhibits ATP-dependent [3H]serotonin accumulation with a KI of 1.7 microM and, at higher concentrations, stimulates efflux of accumulated [3H]serotonin. Stimulation of vesicular [3H]serotonin efflux is due in part to dissipation of the transmembrane pH difference (delta pH) generated by ATP hydrolysis. Part of PCA's ability to stimulate efflux may be due to its transport by the vesicular amine transporter. Flow dialysis experiments demonstrated uptake of [3H]PCA into chromaffin granule membrane vesicles in response to the delta pH generated in the presence of Mg2+ and ATP. In plasma membrane vesicles, no accumulation was observed using an NaCl gradient as the driving force. We conclude that rapid nonmediated efflux of transported PCA prevents accumulation unless PCA is trapped inside by a low internal pH.  相似文献   

11.
Summary Serotonin and some selected substances known to interfere with its formation (diethyldithiocarbamate) and function (Catron®, 5-methyltryptamine, promethazine) were tested for their ability to affect chick embryo morphogenesis during the first 48 h of development. To detect possible differences in sensitivity between the successive morphogenetic events taking place during this period, the treatment was begun at successively more advanced stages corresponding to embryo ages of between 4 and 30 h incubation. In all cases, the treatment was terminated at an embryo age of 48 h incubation. The treatment was performed both in ovo and in vitro.With some exceptions, the substances induced malformations of the same characteristic types. The developmental processes subjected to disturbances included blastoderm expansion, primitive streak formation, neurulation with brain formation, and somitogenesis. At the cellular level, the malformations can be traced to delayed yolk degradation, impaired formation and function of microvilli, and impaired ability of the embryo cells to change shape.All of the tested chemicals can be expected to interfere with intracellular levels of serotonin. They obviously interfered with decomposition of the yolk granules, recognized centres for intracellular serotonin formation and we therefore conclude that the observed morphogenetical disturbances are ultimately due to impairment of the endogenous serotonin formation. We suggest that, in morphogenesis, serotonin primarily promotes the activity of microtubules and microfilaments.  相似文献   

12.
We report photochemical and photophysical studies of a multiphoton-excited reaction of serotonin that previously has been shown to generate a photoproduct capable of emitting broadly in the visible spectral region. The current studies demonstrate that absorption of near-infrared light by an intermediate state prepared via three-photon absorption enhances the photoproduct formation yield, with the largest action cross sections ( approximately 10(-19) cm(2)) observed at the short-wavelength limit of the titanium:sapphire excitation source. The intermediate state is shown to persist for at least tens of nanoseconds and likely to be different from a previously reported oxygen-sensitive intermediate. In addition, the two-photon fluorescence action spectrum for the fluorescent photoproduct was determined and found to have a maximum at approximately 780 nm (3.2 eV). A general mechanism for this photochemical process is proposed.  相似文献   

13.
14.
Antibodies to serotonin   总被引:5,自引:0,他引:5  
  相似文献   

15.
16.
17.
Serotonin, a pineal hormone in mammals, is found in a wide range of plant species at detection levels from a few nanograms to a few milligrams, and has been implicated in several physiological roles, such as flowering, morphogenesis and adaptation to environmental changes. Serotonin synthesis requires two enzymes, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H), with TDC serving as a rate-limiting step because of its high Km relation to the substrate tryptophan (690 µM) and its undetectable expression level in control plants. However, T5H and downstream enzymes, such as serotonin N-hydroxycinnamoyl transferase (SHT), have low Km values with corresponding substrates. This suggests that the biosynthesis of serotonin or serotonin-derived secondary metabolites is restricted to cellular stages when high tryptophan levels are present.Key words: feruloylserotonin, serotonin, tryptamine, tryptamine 5-hydroxylase, tryptophan, tryptophan biosynthesis, tryptophan decarboxylaseSerotonin is found in a broad range of plants and is abundant in reproductive organs, such as fruits and seeds.13 Even though many physiological roles for serotonin in plants have been proposed,27 its actual roles have yet to be examined in detail using molecular, biochemical and genetic approaches. In plants, serotonin is synthesized by two enzymes: tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H). TDC decarboxylates tryptophan into tryptamine, after which T5H hydroxylates tryptamine into serotonin.810 TDC expresses at an undetectable level in rice leaves, whereas T5H expresses constitutively.11,12  相似文献   

18.
The serotonin transporter (SERT) is an integral membrane protein responsible for the clearance of serotonin from the synaptic cleft following the release of the neurotransmitter. SERT plays a prominent role in the regulation of serotoninergic neurotransmission and is a molecular target for multiple antidepressants as well as substances of abuse. Here we show that SERT associates with lipid rafts in both heterologous expression systems and rat brain and that the inclusion of the transporter into lipid microdomains is critical for serotonin uptake activity. SERT is present in a subpopulation of lipid rafts, which is soluble in Triton X-100 but insoluble in other non-ionic detergents such as Brij 58. Disaggregation of lipid rafts upon depletion of cellular cholesterol results in a decrease of serotonin transport capacity (V(max)), due to the reduction of turnover number of serotonin transport. Our data suggest that the association of SERT with lipid rafts may represent a mechanism for regulating the transporter activity and, consequently, serotoninergic signaling in the central nervous system, through the modulation of the cholesterol content in the cell membrane. Furthermore, SERT-containing rafts are detected in both intracellular and cell surface fractions, suggesting that raft association may be important for trafficking and targeting of SERT.  相似文献   

19.
Residues Tyr-110 through Gly-115 of serotonin transporter were replaced, one at a time, with cysteine. Of these mutants, only G113C retained full activity for transport, Q111C and N112C retained partial activity, but Y110C, G114C and G115C were inactive. Poor surface expression was at least partly responsible for the lack of transport by G114C and G115C. In membrane preparations, Y110C through G113C all bound a high affinity cocaine analog similarly to the wild type. Treatment with methanethiosulfonate reagents increased the transport activity of Q111C and N112C to essentially wild-type levels but had no measurable effect on the other mutants. The decreased activity of Q111C and N112C resulted from an increase in the KM for serotonin that was not accompanied by a decrease in serotonin binding affinity. Superfusion experiments indicated a defect in 5-HT exchange. Modification of the inserted cysteine residues reversed the increase in KM and the poor exchange, also with no effect on serotonin affinity. The results suggest that Gln-111 and Asn-112 are not required for substrate binding but participate in subsequent steps in the transport cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号