首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionally, behavior-related discharges of associative neurons are an efferent flow of pulses continuously generated over the course of each behavioral act of an animal. However, predominant research approaches are based on the "stimulus - reaction" principle. Analysis of the dynamics of unit activity in monkeys during performance of a multi-step behavioral complex showed that differences related to different behavioral acts consist in composition changes in the active neurons (or their recombination) rather than in a number of responsive cells or involvement of action-specific neurons. Each combination of active neurons ensures the distribution of efferent signals characteristic of the given combination. These findings suggest the addressing coding of the efferent neuronal signals.  相似文献   

2.
3.
Foetal neurones transplanted within the adult mammalian central nervous system survive and differentiate. Study of such transplants has yielded insights into the function, development and plasticity of brain structures, and suggests promising new therapies for a number of neurological disorders.  相似文献   

4.
We present an hypothesis, derived from the zootype concept of Slack, Holland and Graham. The main point of this hypothesis is to postulate that the primordial function of the zootype genes is to design an appropriate neuronal network in bilaterian animals, by controlling the genes involved in the specificity of the axon pathways. This would be the primary function of the zootype genes in development and their primitive function in evolution. The hypothesis is discussed in view of the current knowledge on the Hox genes, their evolution, their genomic organisation, their expression and their targets.  相似文献   

5.
6.
Perhaps as many as 25–50% of adult patients and children with acquired immunodeficiency syndrome (AIDS) eventually suffer from neurological manifestations, including dysfunction of cognition, movement, and sensation. How can human immunodeficiency virus type 1 (HIV-1) result in neuronal damage if neurons themselves are for all intents and purposes not infected by the virus? this article reviews a series of experiments leading to a hypothesis that accounts at least in part for the neurotoxicity observed in the brains of AIDS patients. There is growing support for the existence of HIV- or immune-related toxins that lead indirectly to the injury or demise of neurons via a potentially complex web of interactions among macrophages (or microglia), astrocytes, and neurons. HIV-infected monocytoid cells (macrophages, microglia, or monocytes), after interacting with astrocytes, secrete eicosanoids, i.e., arachidonic acid and its metabolites, including platelet-activating factor. Macrophages activated by HIV-1 envelope protein gp 120 also appear to release arachidonic acid and its metabolites. In addition, interferon-γ (IFN-γ) stimulation of macrophages induces release of the glutamate-like agonist, quinolinate. Furthermore, HIV-infected macrophage production of cytokines, including TNF-α and IL1-β, contributes to astrogliosis. A final common pathway for neuronal susceptibility appears to be operative, similar to that observed in stroke, trauma, epilepsy, neuropathic pain, and several neurodegenerative diseases, possibly including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves the activation of voltage-dependent Ca2+ channels andN-methyl-d-aspartate (NMDA) receptor-operated channels, and, therefore, offers hope for future pharmacological intervention. This article focuses on clinically tolerated calcium channel antagonists and NMDA antagonists with the potential for trials in humans with AIDS dementia in the near future.  相似文献   

7.
Nonclassical neuronal communications   总被引:2,自引:0,他引:2  
Examples from classical neuronal communications are discussed in the light of biochemical and anatomical data. These are the nonsynaptic axo-axonic interactions of the enkephalinergic neurons on nerve terminals of peptidergic primary sensory afferents and dopaminergic nigrostriatal fibers. Examples of dendrites as presynaptic sites are discussed in three very different situations, namely, the dopaminergic dendrites of the substantia nigra neurons, the gamma-aminobutyric acid--ergic dendrites involved in reciprocal dendro-dendritic synapses in the olfactory bulb, and the peripheral branches of the substance P-containing primary sensory neurons.  相似文献   

8.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR). Specifically, we found that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein), whereas inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. Using the analysis of neuronal death, we also established that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemic neuronal death in vitro and in vivo. Similar results were obtained using in vitro models of TBI and epilepsy. Our study demonstrated that mechanisms for the injury-mediated increase in neuronal gap junction coupling are part of the mechanisms for glutamate-dependent neuronal death.  相似文献   

9.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR). Specifically, we found that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein), whereas inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. Using the analysis of neuronal death, we also established that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemic neuronal death in vitro and in vivo. Similar results were obtained using in vitro models of TBI and epilepsy. Our study demonstrated that mechanisms for the injury-mediated increase in neuronal gap junction coupling are part of the mechanisms for glutamate-dependent neuronal death.  相似文献   

10.
The distinctive polarized morphology of neuronal cells is essential for the proper wiring of the nervous system. The rodent hippocampal neuron culture established about three decades ago has provided an amenable in vitro system to uncover the molecular mechanisms underlying neuronal polarization, a process relying on highly regulated cytoskeletal dynamics, membrane traffic and localized protein degradation. More recent research in vivo has highlighted the importance of the extracellular environment and cell–cell interactions in neuronal polarity. Here, I will review some key signaling pathways regulating neuronal polarization and provide some insights on the complexity of this process gained from in vivo studies.  相似文献   

11.
NeuroD is required for the survival of many subtypes of developing neurons in the vertebrate central nervous system. Because NeuroD-deficient neurons in the hippocampus, cerebellum, and inner ear die prematurely in the early stage of neurogenesis, the role of NeuroD during the later stages of neurogenesis of these cell subtypes is not well understood. In addition, the mechanism of NeuroD-deficient neuronal death has not been investigated. It was hypothesized that NeuroD-dependent neuronal death occurs through a Bax-dependent apoptotic pathway. Based on this hypothesis, this study attempted to rescue neuronal cell death by deleting the Bax gene in NeuroD null mice to investigate the role of NeuroD in surviving neurons. The NeuroD and Bax double null mice displayed a decrease in the number of apoptotic cells in the hippocampus and the cerebellum and the rescue of vestibulocochlear ganglion (VCG) neurons that failed to migrate and innervate. In addition, at E13.5, the NeuroD−/−Bax−/− VCG neurons failed to express TrkB and TrkC, which are known to be essential for the survival of those neurons. These data suggest that neuronal death in NeuroD null mice is mediated by Bax-dependent apoptosis and that NeuroD is required for the migration of VCG neurons. Finally, these data show that TrkB and TrkC expression in E13.5 VCG neurons requires NeuroD and that TrkB and TrkC expression may be necessary for the normal migration and innervations of those neurons.  相似文献   

12.
Summary During mouse brain maturation cellular transglutaminase specific activity increases 2.5 fold from day 3 to adulthood. A more pronounced increase is seen during morphological differentiation of mouse neuroblastoma cells, where serum withdrawal induces neurite outgrowth concomitant with a 10 fold increase in transglutaminase specific activity. In contrast, non-dividing neuroblastoma cells lacking neurites show only a 1.5 fold increase in enzyme specific activity. Transglutaminase activity does not reach maximal levels until extensive neurite formation has occurred. More than 80% of the transglutaminase activity is found in the soluble component of brain and neuroblastoma homogenates. Using [3H]-putrescine as the acyl acceptor, endogenous acyl donor substrates in the neuroblastoma cells included proteins that comigrated on SDS-PAGE with tubulin and actin; however, very high molecular weight crosslinked material is the major reaction product in vitro. When purified brain tubulin, microtubule associated proteins and microtubules were compared as exogenous substrates, only the polymeric microtubules were a good acyl donor substrate. Furthermore, preincubation of purified tubulin with transglutaminase and putrescine stimulated both the rate and extent of microtubule assembly. These findings suggest that transglutaminase may mediate covalent cross-linking of microtubules to other cellular components, or the post-translational modification of tubulin by the formation of -glutamylamines.  相似文献   

13.
神经元微管蛋白的研究进展   总被引:2,自引:0,他引:2  
神经元特殊形态的形成及维持主要依赖于神经元细胞骨架中微管的装配,在此过程中,涉及到微管的组成及其动力学性质,而最终形成了稳定的微管结构,在神经元中,这一结构为沿着神经突运输物质提供了基础。本文将主要在神经元微管的结构与功能,神经元微管蛋白异构基因的表达及其翻译后加工形式等方面的研究进展加以综述。  相似文献   

14.
In the high vocal center (HVC) of adult songbirds, increases in spontaneous neuronal replacement correlate with song changes and with cell death. We experimentally induced death of specific HVC neuron types in adult male zebra finches using targeted photolysis. Induced death of a projection neuron type that normally turns over resulted in compensatory replacement of the same type. Induced death of the normally nonreplaced type did not stimulate their replacement. In juveniles, death of the latter type increased recruitment of the replaceable kind. We infer that neuronal death regulates the recruitment of replaceable neurons. Song deteriorated in some birds only after elimination of replaceable neurons. Behavioral deficits were transient and followed by variable degrees of recovery. This raises the possibility that induced neuronal replacement can restore a learned behavior.  相似文献   

15.
16.
The energy requirements of the brain are amazingly high. The brain represents about 2% of the body weight, but it receives 15% of the total blood flow provided by the cardiovascular system and consumes at least 25% circulating glucose plus 20% oxygen available in the body at rest. The cornerstone feature of the brain energy metabolism is its tight coupling with neuronal activity. An abnormality in the sequence of events allowing neurons to be adequately supplied with the necessary energy could have dramatic consequences exemplified in the neurodegenerative diseases such as epilepsy and Alzheimer’s disease. In this paper, we review the current views on the main pathways of neuronal energy supply.  相似文献   

17.
18.
This study is concerned with synaptic reorganization in local neuronal networks. Within networks of 30 neurons, an initial disequilibrium in connectivity has to be compensated by reorganization of synapses. Such plasticity is not a genetically determined process, but depends on results of neuronal interaction. Neurobiological experiments have lead to a model of the behavior of individual neurons during neuroplastic reorganization, formalized as a synaptogenetic rule that governs changes in the amount of synaptic elements on each neuron. — When this synaptogenetic rule is applied to a system of neurons, there is some freedom left to the choice of further conditions. In this study it is examined, which assumptions additional to the synaptogenetic rule are essential in order to obtain morphogenetic stability. By explicating these assumptions, their plausibility can be tested. It is analysed, in which respect these conditions are important, in which part of the model they exert their influence, and what kind of instability and degeneration happens if the assumptions are violated. —Our essentials for reaching morphogenetic stability are: (1) A network structure that guarantees the possibility of oscillations, (2) a compensation algorithm that guarantees a smooth morphogenesis, (3) kinetic parameters that guarantee convergence in the synaptic elements' change, and (4) a synaptic modification rule that prohibits Hebb-like as well as anti-Hebb-like synaptic changes. — It is concluded that many structural features of the mammalian cerebral cortex are in accordance with the requirements of the model.  相似文献   

19.
神经系统老化问题   总被引:7,自引:0,他引:7  
  相似文献   

20.
Reliability of neuronal responses   总被引:1,自引:0,他引:1  
Movshon JA 《Neuron》2000,27(3):412-414
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号