首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice, a staple food for more than half of the world population, is an important target for iron and zinc biofortification. Current strategies mainly focus on the expression of genes for efficient uptake, long‐distance transport and storage. Targeting intracellular iron mobilization to increase grain iron levels has not been reported. Vacuole is an important cell compartment for iron storage and the NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN (NRAMP) family of transporters export iron from vacuoles to cytosol when needed. We developed transgenic Nipponbare rice lines expressing AtNRAMP3 under the control of the UBIQUITIN or rice embryo/aleurone‐specific 18‐kDa Oleosin (Ole18) promoter together with NICOTIANAMINE SYNTHASE (AtNAS1) and FERRITIN (PvFER), or expressing only AtNRAMP3 and PvFER together. Iron and zinc were increased close to recommended levels in polished grains of the transformed lines, with maximum levels when AtNRAMP3, AtNAS1 and PvFER were expressed together (12.67 μg/g DW iron and 45.60 μg/g DW zinc in polished grains of line NFON16). Similar high iron and zinc levels were obtained in transgenic Indica IR64 lines expressing the AtNRAMP3, AtNAS1 and PvFER cassette (13.65 μg/g DW iron and 48.18 μg/g DW zinc in polished grains of line IR64_1), equalling more than 90% of the recommended iron increase in rice endosperm. Our results demonstrate that targeting intracellular iron stores in combination with iron and zinc transport and endosperm storage is an effective strategy for iron biofortification. The increases achieved in polished IR64 grains are of dietary relevance for human health and a valuable nutrition trait for breeding programmes.  相似文献   

2.
Iron (Fe)‐homeostasis in the plastids is closely associated with Fe transport proteins that prevent Fe from occurring in its toxic free ionic forms. However, the number of known protein families related to Fe transport in the plastids (about five) and the function of iron in non‐green plastids is limited. In the present study, we report the functional characterization of Zea mays Fe deficiency‐related 4 (ZmFDR4), which was isolated from a differentially expressed clone of a cDNA library of Fe deficiency‐induced maize roots. ZmFDR4 is homologous to the bacterial FliP superfamily, coexisted in both algae and terrestrial plants, and capable of restoring the normal growth of the yeast mutant fet3fet4, which possesses defective Fe uptake systems. ZmFDR4 mRNA is ubiquitous in maize and is inducible by iron deficiency in wheat. Transient expression of the 35S:ZmFDR4–eGFP fusion protein in rice protoplasts indicated that ZmFDR4 maybe localizes to the plastids envelope and thylakoid. In 35S:c‐Myc‐ZmFDR4 transgenic tobacco, immunohistochemistry and immunoblotting confirmed that ZmFDR4 is targeted to both the chloroplast envelope and thylakoid. Meanwhile, ultrastructure analysis indicates that ZmFDR4 promotes the density of plastids and accumulation of starch grains. Moreover, Bathophenanthroline disulfonate (BPDS) colorimetry and inductively coupled plasma mass spectrometry (ICP‐MS) indicate that ZmFDR4 is related to Fe uptake by plastids and increases seed Fe content. Finally, 35S:c‐Myc‐ZmFDR4 transgenic tobacco show enhanced photosynthetic efficiency. Therefore, the results of the present study demonstrate that ZmFDR4 functions as an iron transporter in monocot plastids and provide insight into the process of Fe uptake by plastids.  相似文献   

3.
A sequence within the E2 domain of soluble amyloid precursor protein (sAPP) stimulates iron efflux. This activity has been attributed to a ferroxidase activity suggested for this motif. We demonstrate that the stimulation of efflux supported by this peptide and by sAPPα is due to their stabilization of the ferrous iron exporter, ferroportin (Fpn), in the plasma membrane of human brain microvascular endothelial cells (hBMVEC). The peptide does not bind ferric iron explaining why it does not and thermodynamically cannot promote ferrous iron autoxidation. This peptide specifically pulls Fpn down from the plasma membrane of hBMVEC; based on these results, FTP, for ferroportin‐targeting peptide, correctly identifies the function of this peptide. The data suggest that in stabilizing Fpn via the targeting due to the FTP sequence, sAPP will increase the flux of iron into the cerebral interstitium. This inference correlates with the observation of significant iron deposition in the amyloid plaques characteristic of Alzheimer's disease.  相似文献   

4.
Laboratory experiments with iron offer important insight into the physiology of marine phytoplankton and the biogeochemical cycles they influence. These experiments often rely on chelators to buffer the concentration of available iron, but the buffer can fail when cell density increases, causing the concentration of that iron to drop rapidly. To more easily determine the point when the iron concentration falls, we developed an online calculator to estimate the maximum phytoplankton density that a growth medium can support. The results of the calculator were compared to the numerical simulations of a Fe‐limited culture of the diatom Thalassiosira weissflogii (Grunow) Fryxell and Hasle. Modeling reveals that the assumptions behind thermodynamic estimates of unchelated Fe concentration can fail before easily perceptible changes in growth rate, potentially causing physiological changes that could alter the conclusions of culture experiments. The calculator is available at http://www.marsci.uga.edu/fidoplankter .  相似文献   

5.
6.
Hemopexin provides neuroprotection in mouse models of stroke and intracerebral hemorrhage and protects neurons in vitro against heme or reactive oxygen species (ROS) toxicity via heme oxygenase‐1 (HO1) activity. To model human brain neurons experiencing hemorrhages and inflammation, we used human neuroblastoma cells, heme–hemopexin complexes, and physiologically relevant ROS, for example, H2O2 and HOCl, to provide novel insights into the underlying mechanism whereby hemopexin safely maintains heme and iron homeostasis. Human amyloid precursor protein (hAPP), needed for iron export from neurons, is induced ~twofold after heme–hemopexin endocytosis by iron from heme catabolism via the iron‐regulatory element of hAPP mRNA. Heme–hemopexin is relatively resistant to damage by ROS and retains its ability to induce the cytoprotective HO1 after exposure to tert‐butylhydroperoxide, although induction is impaired, but not eliminated, by exposure to high concentrations of H2O2 in vitro. Apo‐hemopexin, which predominates in non‐hemolytic states, resists damage by H2O2 and HOCl, except for the highest concentrations likely in vivo. Heme–albumin and albumin are preferential targets for ROS; thus, albumin protects hemopexin in biological fluids like CSF and plasma where it is abundant. These observations provide strong evidence that hemopexin will be neuroprotective after traumatic brain injury, with heme release in the CNS, and during the ensuing inflammation. Hemopexin sequesters heme, thus preventing unregulated heme uptake that leads to toxicity; it safely delivers heme to neuronal cells; and it activates the induction of proteins including HO1 and hAPP that keep heme and iron at safe levels in neurons.  相似文献   

7.
The inclusion of iron compounds in teeth, which impart a red to orange colour to them, is a phenomenon shown by several groups of vertebrates in different periods of their evolution. Incisors from fossil and extant shrews and from extant rodents were sectioned and studied with the techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) to compare their structure and the distribution of Fe. The enamel in white‐ and red‐toothed soricids has three layers; two of them are divided into two zones in the red‐toothed species. However, the most external layer varies among taxa; it is well defined in Sorex but difficult to identify in the Early Pleistocene genera Beremendia or Dolinasorex. In the arvicoline rodent Terricola, only two layers can be defined, the outer of which is divided into two zones depending on the presence or absence of Fe. The Fe proportions in the larger soricids reach up to 45%, but in rodents only up to 10% (weight % with respect to Fe + Ca + P). The STEM study shows that in a fossil soricid the Fe phases form clusters of nanometric particles of very poor crystalline oxides or hydroxides surrounding the apatite crystals that form the enamel.  相似文献   

8.
To maintain iron homoeostasis, the iron regulatory hormone hepcidin is tightly controlled by BMP‐Smad signalling pathway, but the physiological role of Smad7 in hepcidin regulation remains elusive. We generated and characterized hepatocyte‐specific Smad7 knockout mice (Smad7Alb/Alb), which showed decreased serum iron, tissue iron, haemoglobin concentration, up‐regulated hepcidin and increased phosphor‐Smad1/5/8 levels in both isolated primary hepatocytes and liver tissues. Increased levels of hepcidin lead to reduced expression of intestinal ferroportin and mild iron deficiency anaemia. Interestingly, we found no difference in hepcidin expression or phosphor‐Smad1/5/8 levels between iron‐challenged Smad7Alb/Alb and Smad7flox/flox, suggesting other factors assume the role of iron‐induced hepcidin regulation in Smad7 deletion. We performed RNA‐seq to identify differentially expressed genes in the liver. Significantly up‐regulated genes were then mapped to pathways, revealing TGF‐β signalling as one of the most relevant pathways, including the up‐regulated genes Smad6, Bambi and Fst (Follistatin). We found that Smad6 and Bambi—but not Follistatin—are controlled by the iron‐BMP–Smad pathway. Overexpressing Smad6, Bambi or Follistatin in cells significantly reduced hepcidin expression. Smad7 functions as a key regulator of iron homoeostasis by negatively controlling hepcidin expression, and Smad6 and Smad7 have non‐redundant roles. Smad6, Bambi and Follistatin serve as additional inhibitors of hepcidin in the liver.  相似文献   

9.
Methanogenesis and iron reduction play major roles in determining global fluxes of greenhouse gases. Despite their importance, environmental factors that influence their interactions are poorly known. Here, we present evidence that pH significantly influences the balance between each reaction in anoxic environments that contain ferric (oxyhydr)oxide minerals. In sediment bioreactors that contained goethite as a source of ferric iron, both iron reduction and methanogenesis occurred but the balance between them varied significantly with pH. Compared to bioreactors receiving acidic media (pH 6), electron donor oxidation was 85% lower for iron reduction and 61% higher for methanogenesis in bioreactors receiving alkaline media (pH 7.5). Thus, methanogenesis displaced iron reduction considerably at alkaline pH. Geochemistry data collected from U.S. aquifers demonstrate that a similar pattern also exists on a broad spatial scale in natural settings. In contrast, in bioreactors that were not augmented with goethite, clay minerals served as the source of ferric iron and the balance between each reaction did not vary significantly with pH. We therefore conclude that pH can regulate the relative contributions of microbial iron reduction and methanogenesis to carbon fluxes from terrestrial environments. We further propose that the availability of ferric (oxyhydr)oxide minerals influences the extent to which the balance between each reaction is sensitive to pH. The results of this study advance our understanding of environmental controls on microbial methane generation and provide a basis for using pH and the occurrence of ferric minerals to refine predictions of greenhouse gas fluxes.  相似文献   

10.
The role of iron and compounds that chelate iron in the development of fungal diseases and wood degradation is not well understood, and their involvement in the simultaneous pathogenic and wood‐decomposing capabilities of Heterobasidion annosum s.l. is unknown. In the current study, the production of low‐molecular‐mass compounds that can chelate iron, such as catecholate, hydroxamate and oxalate, by H. annosum s.l. was correlated positively with supplementation of the medium with iron. In contrast, iron supplementation did not increase the Fe3+‐reducing ability of H. annosum s.s. and H. abietinum hyphae. Indeed, H. annosum s.s. is known to cause higher mortality of the plant host, but produced a lower quantity of siderophores than H. abietinum or H. parviporum. Under iron supplementation, siderophore production was correlated with phenoloxidase activity in the low‐molecular‐mass fraction, which might have consequences for cell wall decomposition.  相似文献   

11.
12.
Parkinson's disease is marked clinically by motor dysfunction and pathologically by dopaminergic cell loss in the substantia nigra and iron accumulation in the substantia nigra. The driver underlying iron accumulation remains unknown and could be genetic or environmental. The HFE protein is critical for the regulation of cellular iron uptake. Mutations within this protein are associated with increased iron accumulation including in the brain. We have focused on the commonly occurring H63D variant of the HFE gene as a disease modifier in a number of neurodegenerative diseases. To investigate the role of H63D HFE genotype, we generated a mouse model in which the wild‐type (WT ) HFE gene is replaced by the H67D gene variant (mouse homolog of the human H63D gene variant). Using paraquat toxicity as the model for Parkinson's disease, we found that WT mice responded as expected with significantly greater motor function, loss of tyrosine hydroxylase staining and increase microglial staining in the substantia nigra, and an increase in R 2 relaxation rate within the substantia nigra of the paraquat‐treated mice compared to their saline‐treated counterparts. In contrast, the H67D mice showed a remarkable resistance to paraquat treatment; specifically differing from the WT mice with no changes in motor function or changes in R 2 relaxation rates following paraquat exposure. At baseline, there were differences between the H67D HFE mice and WT mice in gut microbiome profile and increased L‐ferritin staining in the substantia nigra that could account for the resistance to paraquat. Of particular note, the H67D HFE mice regardless of whether or not they were treated with paraquat had significantly less tyrosine hydroxylase immunostaining than WT . Our results clearly demonstrate that the HFE genotype impacts the expression of tyrosine hydroxylase in the substantia nigra, the gut microbiome and the response to paraquat providing additional support that the HFE genotype is a disease modifier for Parkinson's disease. Moreover, the finding that the HFE mutant mice are resistant to paraquat may provide a model in which to study resistant mechanisms to neurotoxicants.

  相似文献   

13.
14.
Warming and nutrient limitation are stressors known to weaken the health of microalgae. In situations of stress, access to energy reserves can minimize physiological damage. Because of its widespread requirements in biochemical processes, iron is an important trace metal, especially for photosynthetic organisms. Lowered iron availability in oceans experiencing rising temperatures may contribute to the thermal sensitivity of reef‐building corals, which rely on mutualisms with dinoflagellates to survive. To test the influence of iron concentration on thermal sensitivity, the physiological responses of cultured symbiotic dinoflagellates (genus Breviolum; family Symbiodiniaceae) were evaluated when exposed to increasing temperatures (26 to 30°C) and iron concentrations ranging from replete (500 pM Fe’) to limiting (50 pM Fe’) under a diurnal light cycle with saturating radiance. Declines in photosynthetic efficiency at elevated temperatures indicated sensitivity to heat stress. Furthermore, five times the amount of iron was needed to reach exponential growth during heat stress (50 pM Fe′ at 26–28°C vs. 250 pM Fe′ at 30°C). In treatments where exponential growth was reached, Breviolum psygmophilum grew faster than B.minutum, possibly due to greater cellular contents of iron and other trace metals. The metal composition of B.psygmophilum shifted only at the highest temperature (30°C), whereas changes in B.minutum were observed at lower temperatures (28°C). The influence of iron availability in modulating each alga’s response to thermal stress suggests the importance of trace metals to the health of coral‐algal mutualisms. Ultimately, a greater ability to acquire scarce metals may improve the tolerance of corals to physiological stressors and contribute to the differences in performance associated with hosting one symbiont species over another.  相似文献   

15.
16.
Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down‐regulated by alcohol in cell lines and animal models. This down‐regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real‐time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down‐regulation of hepcidin expression leading to up‐regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号