首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

To investigate the effect of endogenous Cas9 on genome editing efficiency in transgenic zebrafish.

Results

Here we have constructed a transgenic zebrafish strain that can be screened by pigment deficiency. Compared with the traditional CRISPR injection method, the transgenic zebrafish can improve the efficiency of genome editing significantly. At the same time, we first observed that the phenotype of vertebral malformation in early embryonic development of zebrafish after ZFERV knockout.

Conclusions

The transgenic zebrafish with expressed Cas9, is more efficient in genome editing. And the results of ZFERV knockout indicated that ERV may affect the vertebral development by Notch1/Delta D signal pathway.
  相似文献   

2.

Background

Crocetin, an agent derived from saffron, has multiple pharmacological properties, such as neuroprotective, anti-oxidant, and anti-inflammatory actions. These properties might benefit the treatment of Alzheimer’s disease (AD). In the present study, we tested whether crocetin attenuates inflammation and amyloid-β (Aβ) accumulation in APPsw transgenic mice, AD mouse models. Cell viability and the levels of Aβ40 and Aβ42 in HeLa cells stably transfected with Swedish mutant APP751 were evaluated. Mice with Swedish mutant APP751 transgene were used as transgenic mouse models of AD, and were orally administrated with crocetin. Aβ protein and inflammatory cytokines were measured with ELISA. NF-κB and P53 were measured with western blot assay. Learning and memory were analyzed with Morris water maze and novel object recognition tests.

Results

Crocetin significantly reduced Aβ40 and Aβ42 secretion in Hela cells without effecting cell viability. In AD transgenic mice, crocetin significantly reduced the pro-inflammatory cytokines and enhanced anti-inflammatory cytokine in plasma, suppressed NF-κB activation and P53 expression in the hippocampus, decreased Aβ in various brain areas, and improved learning and memory deficits.

Conclusion

Crocetin improves Aβ accumulation-induced learning and memory deficit in AD transgenic mice, probably due to its anti-inflammatory and anti-apoptotic functions.
  相似文献   

3.

Background

Recently, growing attention has been directed toward stem cell metabolism, with the key observation that metabolism not only fuels the proper functioning of stem cells but also regulates the fate of these cells. There seems to be a clear link between the self-renewal of pluripotent stem cells (PSCs), in which cells proliferate indefinitely without differentiation, and the activity of specific metabolic pathways. The unique metabolism in PSCs plays an important role in maintaining pluripotency by regulating signaling pathways and resetting the epigenome.

Objective

To review the most recent publications concerning the metabolism of pluripotent stem cells and the role of metabolism in PSC self-renewal and differentiation.

Methods

A systematic literature search related to the metabolism of PSCs was conducted in databases including Medline, Embase, and Web of Science. The search was performed without language restrictions on all papers published before May 2016. The following keywords were used: “metabolism” combined with either “embryonic stem cell” or “epiblast stem cell.”

Results

Hundreds of papers focusing specifically on the metabolism of pluripotent stem cells were uncovered and summarized.

Conclusion

Identifying the specific metabolic pathways involved in pluripotency maintenance is crucial for progress in the field of developmental biology and regenerative medicine. Additionally, better understanding of the metabolism in PSCs will facilitate the derivation and maintenance of authentic PSCs from species other than mouse, rat, and human.
  相似文献   

4.
5.

Background

Lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18, alpha L beta 2) is required for many cellular adhesive interactions during the immune response.

Results

The Capra hircus CD11a-encoding cDNA was sequenced and compared with its human, murine, rat, bovine and ovine counterparts. Despite some focal differences, it shares all the main characteristics of its known mammalian homologues.

Conclusion

Therefore, along with the caprine CD18-encoding cDNA, which has been available for a few months, the sequence data revealed here will allow the Capra hircus LFA-1 expression in vitro as a tool to explore the specificities of inflammation in the caprine species.
  相似文献   

6.

Introduction

Citrus canker, a disease caused by Xanthomonas axonopodis pv. citri (Xac) bacteria, has been responsible for extensive economic losses in citriculture. In this work, we report the metabolic responses of citrus plants during disease development. This information can be useful for understanding the natural mechanism of plant defense beyond helping design new varieties and/or genetically modified genotypes for tolerance/resistance against citrus canker.

Objectives

To understand how primary metabolism is affected in two sweet orange genotypes during citrus canker development.

Methods

1H NMR spectroscopy together with chemometrics was used to evaluate the metabolic changes caused by Xac infection at various time points (days 4, 12 and 20) in Citrus sinensis L. Osbeck leaves from non-transgenic and transgenic plants expressing the antibacterial peptide sarcotoxin.

Results

The results revealed a high level of metabolic similarity between the studied genotypes without Xac infection. However, after Xac infection, the plants responded differently to disease development. The non-transgenic genotype showed altered early precursors of some secondary metabolites (tryptophan, tyrosine and putrescine) in addition to signaling metabolites of biotic stress (putrescine and dimethylamine), and the drastic reduction of gluconeogenesis was the overall metabolic cost for defense. The transgenic genotype suffered late metabolic changes due to the protective stoichiometric role of sarcotoxin. In addition, the oxidative stress response was more balanced in transgenic than in non-transgenic plants.

Conclusion

An NMR-based metabolomic approach was useful for understanding plant–pathogen interactions in citrus canker. Our findings provide valuable preliminary insights into different stages of citrus canker development.
  相似文献   

7.

Background

Insects are renowned for their ability to survive anoxia. Anoxia tolerance may be enhanced during chilling through metabolic suppression.

Aims

Here, the metabolomic response of insects to anoxia, both with and without chilling, for different durations (12–36 h) was examined to assess the potential cross-tolerance mechanisms.

Results

Chilling during anoxia (cold anoxia) significantly improved survival relative to anoxia at warmer temperatures. Reduced intermediate metabolites and increased lactic acid, indicating a switch to anaerobic metabolism, were characteristic of larvae in anoxia.

Conclusions

Anoxia tolerance was correlated survival improvements after cold anoxia were correlated with a reduction in anaerobic metabolism.
  相似文献   

8.

Introduction

The pathogenicity at differing points along the aggregation pathway of many fibril-forming proteins associated with neurodegenerative diseases is unclear. Understanding the effect of different aggregation states of these proteins on cellular processes is essential to enhance understanding of diseases and provide future options for diagnosis and therapeutic intervention.

Objectives

To establish a robust method to probe the metabolic changes of neuronal cells and use it to monitor cellular response to challenge with three amyloidogenic proteins associated with neurodegenerative diseases in different aggregation states.

Method

Neuroblastoma SH-SY5Y cells were employed to design a robust routine system to perform a statistically rigorous NMR metabolomics study into cellular effects of sub-toxic levels of alpha-synuclein, amyloid-beta 40 and amyloid-beta 42 in monomeric, oligomeric and fibrillar conformations.

Results

This investigation developed a rigorous model to monitor intracellular metabolic profiles of neuronal cells through combination of existing methods. This model revealed eight key metabolites that are altered when neuroblastoma cells are challenged with proteins in different aggregation states. Metabolic pathways associated with lipid metabolism, neurotransmission and adaptation to oxidative stress and inflammation are the predominant contributors to the cellular variance and intracellular metabolite levels. The observed metabolite changes for monomer and oligomer challenge may represent cellular effort to counteract the pathogenicity of the challenge, whereas fibrillar challenge is indicative of system shutdown. This implies that although markers of stress are more prevalent under oligomeric challenge the fibrillar response suggests a more toxic environment.

Conclusion

This approach is applicable to any cell type that can be cultured in a laboratory (primary or cell line) as a method of investigating how protein challenge affects signalling pathways, providing additional understanding as to the role of protein aggregation in neurodegenerative disease initiation and progression.
  相似文献   

9.
10.

Objective

To investigate the role of lncRNA ZEB1-AS1 in B-lineage acute lymphoblastic leukemia (B-ALL).

Results

ZEB1-AS1 levels were aberrantly up-regulated in B-ALL. All correlated with STAT3 activation and IL-11 production. Moreover, a high level of ZEB1-AS1 predicted poor prognosis of B-ALL patients. Mechanistically, ZEB1-AS1 could bind to IL-11 and promote IL-11 stability. Down-regulation of ZEB1-AS1 decreased IL-11 production of human bone marrow stromal cells (BMSCs), which led to suppressed proliferation and inhibited IL-11/STAT3 pathway in BALL-1 cells.

Conclusions

ZEB1-AS1 promotes the activation of IL-11/STAT3 signaling pathway by associating with IL-11 in B-ALL.
  相似文献   

11.

Background

Diabetes mellitus (DM) is one of the most prevalent chronic diseases, and its prevalence continues to increase globally. The impact of mitochondrial dysfunction and lipid metabolism on diabetes mellitus and insulin resistance (IR) has been implicated in several previous reports; however, the results of studies are confusing despite four decades of study.

Methods/Results

This review has evaluated updated understanding of the role of mitochondrial dysfunction and lipid metabolism on type 2 diabetes, and found that mitochondrial dysfunction and lipid metabolism disorder induce the dysregulation of liver and pancreatic beta cells, insulin resistance, and type 2 diabetes.

Conclusion

Mitochondrial dysfunction and lipid metabolism induce metabolic dysregulation and finally increasing the possibility of diabetes.
  相似文献   

12.

Introduction

Sleep plays an important role in cardiometabolic health. The sleep-wake cycle is partially driven by the endogenous circadian clock, which governs a range of metabolic pathways. The association between sleep and cardiometabolic health may be mediated by alterations of the human metabolome.

Objectives

To better understand the biological mechanism underlying the association between sleep and health, we examined human plasma metabolites in relation to sleep duration and sleep timing.

Methods

Using an untargeted approach, 329 fasting plasma metabolites were measured in 277 Chinese participants. We measured sleep timing (midpoint between bedtime and wake up time) using repeated time-use surveys (4 weeks during 1 year) and previous night sleep duration from questionnaires completed before sample donation.

Results

We found 64 metabolites that were associated with sleep timing with a false discovery rate of 0.2 or lower, after adjusting for potential confounders. Notably, we found that later sleep timing was associated with higher levels of multiple metabolites in amino acid metabolism, including branched chain amino acids and their gamma-glutamyl dipeptides. We also found widespread associations between sleep timing and numerous metabolites in lipid metabolism, including bile acids, carnitines and fatty acids. In contrast, previous night sleep duration was not associated with plasma metabolites in our study.

Conclusion

Sleep timing was associated with a large number of metabolites across a variety of biochemical pathways. Some metabolite associations are consistent with a relationship between late chronotype and adverse effects on cardiometabolic health.
  相似文献   

13.

Introduction

Lactic acid bacteria (LAB) play an important role in the food industry as starter cultures to manufacture fermented food, and as probiotics. In recent years, there has been an increasing interest in using LAB cultures for biopreservation of food products. It is therefore of great interest to study the detailed metabolism of these bacteria.

Objectives

This study aimed at developing an efficient analytical protocol for real-time in vitro NMR measurements of LAB fermentations, from sample preparation, over data acquisition and preprocessing, to the extraction of the kinetic metabolic profiles.

Method

The developed analytical protocol is applied to an experimental design with two LAB strains (Lactobacillus rhamnosus DSM 20021 and Lactobacillus plantarum subsp. plantarum DSM 20174), two initial pH levels (pHi 6.5 and 5.5), two levels of glucose concentration (2.5 and 0.25 g/l), and two batch fermentation replicates.

Results

The design factors proved to be strongly significant and led to interesting biological information. The protocol allowed for detailed real-time kinetic analysis of 11 major metabolites involved in the glycolysis, pyruvate catabolism, amino acid catabolism and cell energy metabolism. New biological knowledge was obtained about the different patterns of glutamine and aspartic acid consumption by the two strains. It was observed that L. plantarum consumes more glutamine at low pH (pH 5.5) whereas the opposite applies to L. rhamnosus. Regarding aspartic acid, both of the strains consume it higher at low pH, and overall L. plantarum consumes it more. L. rhamnosus did not consume aspartic acid at pH 6.5.

Conclusion

The developed analytical protocol for real-time in vitro NMR measurements of bacterial metabolism allows a relatively easy investigation of different fermentation factors such as new strains, new substrates, cohabitations, temperature, and pH and has a great potential in biopreservation studies to discover new efficient bioprotective cultures.
  相似文献   

14.

Background

The protein encoded by the gene ybgI was chosen as a target for a structural genomics project emphasizing the relation of protein structure to function.

Results

The structure of the ybgI protein is a toroid composed of six polypeptide chains forming a trimer of dimers. Each polypeptide chain binds two metal ions on the inside of the toroid.

Conclusion

The toroidal structure is comparable to that of some proteins that are involved in DNA metabolism. The di-nuclear metal site could imply that the specific function of this protein is as a hydrolase-oxidase enzyme.
  相似文献   

15.

Background

Amyloid plaques and neurofibrillary tangles (NFTs) are the defining pathological hallmarks of Alzheimer’s disease (AD). Increasing the quantity of the O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification of nuclear and cytoplasmic proteins slows neurodegeneration and blocks the formation of NFTs in a tauopathy mouse model. It remains unknown, however, if O-GlcNAc can influence the formation of amyloid plaques in the presence of tau pathology.

Results

We treated double transgenic TAPP mice, which express both mutant human tau and amyloid precursor protein (APP), with a highly selective orally bioavailable inhibitor of the enzyme responsible for removing O-GlcNAc (OGA) to increase O-GlcNAc in the brain. We find that increased O-GlcNAc levels block cognitive decline in the TAPP mice and this effect parallels decreased β-amyloid peptide levels and decreased levels of amyloid plaques.

Conclusions

This study indicates that increased O-GlcNAc can influence β-amyloid pathology in the presence of tau pathology. The findings provide good support for OGA as a promising therapeutic target to alter disease progression in Alzheimer disease.
  相似文献   

16.

Introduction

Polyploidy is a widespread phenomenon in nature and is thought to play a major role in the evolution of flowering plants. Additionally, polyploidization produces novel phenotypes that through plant breeding have enhanced the production of biomass and improved the stress tolerance of major economic crops. However, the effect of polyploidization on plant metabolism is still unclear.

Objectives

In order to test whether there are common metabolic responses following genome doubling, we performed a comparative metabolomic analysis of mature leaves from doubled diploids and the corresponding diploids of red tangerine (Citrus reticulata Blanco), trifoliate orange (Poncirus trifoliata L. Raf.) and precocious trifoliate orange (P. trifoliata).

Methods

Non-targeted and targeted metabolic profiling of mature leaves from three doubled diploids and their diploid controls were performed by using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) and gas chromatography–mass spectrometry (GC–MS).

Results

About 11–34% of the detected metabolic features differentially accumulated in the doubled diploids, mostly by less than fivefold. The levels of primary metabolites tended to increase in the doubled diploids. Concentrations of tricarboxylic acid cycle intermediates—citric acid, malic acid, fumaric acid and succinic acid, enhanced in all of the doubled diploids. The levels of secondary metabolites, including phenylpropanoids and terpenoids, tended to decrease in the doubled diploids. This is consistent with the lower C/N ratios in the doubled diploids.

Conclusions

Polyploidization had a significant but relatively limited influence on the accumulation of metabolites in these citrus species. We conclude that primary metabolism takes priority over secondary metabolism in doubled diploid plants to relieve the “genomic stress” encountered during the early stages of genome doubling, probably to promote vitality and growth.
  相似文献   

17.

Objective

The purpose of the article is to evaluate the changes in lipid metabolism in bovine mammary-gland epithelial MAC-T cells after PKM2 knockdown.

Results

MAC-T cells stably expressing low levels of PKM2 were established with lentivirus-mediated small hairpin RNA. Although the knockdown of PKM2 had no effect on MAC-T cell growth, the reduced expression of PKM2 attenuated the mRNA and protein expression of key enzymes involved in sterol synthesis through the SREBP pathway.

Conclusions

The downregulation of PKM2 significantly influenced lipid synthesis in bovine mammary-gland epithelial MAC-T cells. These findings extend our understanding of the crosstalk between glycolysis and lipid metabolism in bovine mammary-gland epithelial cells.
  相似文献   

18.

Objective

To use a transient expression system to express a truncated human tissue plasminogen activator (K2S) gene in cucurbit plants.

Results

The recombinant tissue plasminogen activator protein (K2S form) was expressed in active form in cucurbit plants. Its molecular weight was 43 kDa. The plant-derived rt-PA was determined using goat anti-rabbit antibody by western blotting. Among the infected lines, the highest expression of rt-PA was 62 ng/100 mg per leaf tissue as measured by ELISA. The enzymatic activity of the plant-derived rt-PA was 0.8 IU/ml.

Conclusions

The K25 form of rt-PA was expressed for the first time using the viral expression system. Plant-derived rt-PA showed similar potency to commercially-available PA.
  相似文献   

19.
20.

Background

Paracoccidioidomycosis is a neglected tropical fungal infection with great predilection for adult men, indicating the participation of female hormone estrogen in preventing paracoccidioidomycosis development in women. Estrogen has an immunologic effect leading to polarization toward the Th2 immune response, which favors the disease evolution.

Objectives

To evaluate estrogen and progesterone receptors in oral paracoccidioidomycosis lesions and to verify any association with tissue fungi counting in women and men.

Methods

Thirty-two cases of chronic oral paracoccidioidomycosis were included. Immunohistochemical analyses for anti-estrogen receptor-α, anti-progesterone receptor and anti-Paracoccidioides brasiliensis antibodies were performed. The differences between women and men and the relations among the immunomarkers for each gender were also evaluated.

Results

A significant positive correlation was observed between estrogen receptor-α and the amount of fungi in women. In addition, estrogen receptor-α was mildly expressed in the inflammatory cells of female patients, while progesterone receptor was expressed in both genders, with similar expression between women and men. Moreover, fungi counting revealed no differences between genders.

Conclusions

Estrogen receptor-α was expressed only in women and showed a positive correlation with the amount of fungi in oral paracoccidioidomycosis, while progesterone receptor was observed in both genders and exhibited no correlation with estrogen receptor-α or fungi counting.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号