首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》2020,1861(12):148290
We hypothesized that NO is generated in isolated cardiac mitochondria as the source for ONOO production during oxidative stress. We monitored generation of ONOO from guinea pig isolated cardiac mitochondria subjected to excess Ca2+ uptake before adding succinate and determined if ONOO production was dependent on a nitric oxide synthase (NOS) located in cardiac mitochondria (mtNOS). Mitochondria were suspended in experimental buffer at pH 7.15, and treated with CaCl2 and then the complex II substrate Na-succinate, followed by menadione, a quinone redox cycler, to generate O2•−. L-tyrosine was added to the mitochondrial suspension where it is oxidized by ONOO to form dityrosine (diTyr) in proportion to the ONOO present. We found that exposing mitochondria to excess CaCl2 before succinate resulted in an increase in diTyr and amplex red fluorescence (H2O2) signals, indicating that mitochondrial oxidant stress, induced by elevated mtCa2+ and succinate, increased mitochondrial ONOO production via NO and O2•−. Changes in mitochondrial ONOO production dependent on NOS were evidenced by using NOS inhibitors L-NAME/L-NNA, TEMPOL, a superoxide dismutase (SOD) mimetic, and PTIO, a potent global NO scavenger. L-NAME and L-NNA decreased succinate and menadione-mediated ONOO production, PTIO decreased production of ONOO, and TEMPOL decreased ONOO levels by converting more O2•− to H2O2. Electron microscopy showed immuno-gold labeled iNOS and nNOS in mitochondria isolated from cardiomyocytes and heart tissue. Western blots demonstrated iNOS and nNOS bands in total heart tissue, bands for both iNOS and nNOS in β-tubulin-free non-purified (crude) mitochondrial preparations, and a prominent iNOS band, but no nNOS band, in purified (Golgi and ER-free) mitochondria. Prior treatment of guinea pigs with lipopolysacharride (LPS) enhanced expression of iNOS in liver mitochondria but not in heart mitochondria. Our results indicate that release of ONOO into the buffer is dependent both on O2•− released from mitochondria and NO derived from a mtCa2+-inducible nNOS isoform, possibly attached to mitochondria, and a mtNOS isoform like iNOS that is non-inducible.  相似文献   

2.
We have previously reported that angiotensin II (ANG II) induces oscillations in the cytoplasmic calcium concentration ([Ca2+]i) of pulmonary vascular myocytes. The present work was undertaken to investigate the effect of ANG II in comparison with ATP and caffeine on membrane currents and to explore the relation between these membrane currents and [Ca2+]i. In cells clamped at −60 mV, ANG II (10 μM) or ATP (100 μM) induced an oscillatory inward current. Caffeine (5 μM) induced only one transient inward current. In control conditions, the reversal potential (Erev) of these currents was close to the equilibrium potential for Cl ions (ECl = −2.1 mV) and was shifted towards more positive values in low-Cl solutions. Niflumic acid (10–50 μM) and DIDS (0.25-1 mM) inhibited this inward current. Combined recordings of membrane current and [Ca2+]i by Indo-1 microspectrofluorimetry revealed that ANG II- and ATP-induced currents occurred simultaneously with oscillations in [Ca2+]i, whereas the caffeine-induced current was accompanied by only one transient increase in [Ca2+]i Niflumic acid (25 μM) had no effect on agonist-induced [Ca2+]i responses, whereas thapsigargin (1 μM) abolished both membrane current and the [Ca2+]i response. Heparin (5 mg/ml in the pipette solution) inhibited both [Ca2+]i responses and membrane currents induced by ANG II and ATP, but not by caffeine. In pulmonary arterial strips, ANG II-induced contraction was inhibited by niflumic acid (25 μM) or nifedipine (1 μM) to the same extent and the two substances did not have an additive effect. This study demonstrates that, in pulmonary vascular smooth muscle, ANG II, as well as ATP, activate an oscillatory calcium dependent chloride current which is triggered by cyclic increases in [Ca2+]i and that both oscillatory phenomena are primarily IP3 mediated. It is suggested that ANG II-induced oscillatory chloride current could depolarise the cell membrane leading to activation of voltage-operated Ca2+ channels. The resulting Ca2+ influx contributes to the component of ANG II-induced contraction that is equally sensitive to chloride or calcium channel blockade.  相似文献   

3.
Smad7 is an inhibitory Smad and plays a protective role in obstructive and diabetic kidney disease. However, the role and mechanisms of Smad7 in hypertensive nephropathy remains unexplored. Thus, the aim of this study was to investigate the role and regulatory mechanisms of Smad7 in ANG II-induced hypertensive nephropathy. Smad7 gene knockout (KO) and wild-type (WT) mice received a subcutaneous infusion of ANG II or control saline for 4 weeks via osmotic mini-pumps. ANG II infusion produced equivalent hypertension in Smad7 KO and WT mice; however, Smad7 KO mice exhibited more severe renal functional injury as shown by increased proteinuria and reduced renal function (both p<0.05) when compared with Smad7 WT mice. Enhanced renal injury in Smad7 KO mice was associated with more progressive renal fibrosis with elevated TGF-β/Smad3 signalling. Smad7 KO mice also showed more profound renal inflammation including increased macrophage infiltration, enhanced IL-1β and TNF-α expression, and a marked activation of NF-κB signaling (all p<0.01). Further studies revealed that enhanced ANG II-mediated renal inflammation and fibrosis in Smad7 KO mice were also associated with up-regulation of Sp1 but downregulation of miR-29b expression. Taken together, the present study revealed that enhanced Sp1-TGF-β1/Smad3-NF-κB signaling and loss of miR-29 may be mechanisms by which deletion of Smad7 promotes ANG II-mediated renal fibrosis and inflammation. Thus, Smad7 may play a protective role in ANG II-induced hypertensive kidney disease.  相似文献   

4.
Angiotensin II (ANG II) stimulates renal tubular reabsorption of NaCl by targeting Na+/H+ exchanger NHE3. We have shown previously that inositol 1,4,5-triphosphate receptor-binding protein released with inositol 1,4,5-triphosphate (IRBIT) plays a critical role in stimulation of NHE3 in response to elevated intracellular Ca2+ concentration ([Ca2+]i). In this study, we investigated the role of IRBIT in mediating NHE3 activation by ANG II. IRBIT is abundantly expressed in the proximal tubules where NHE3 is located. ANG II at physiological concentrations stimulates NHE3 transport activity in a model proximal tubule cell line. ANG II-induced activation of NHE3 was abrogated by knockdown of IRBIT, whereas overexpression of IRBIT enhanced the effect of ANG II on NHE3. ANG II transiently increased binding of IRBIT to NHE3 at 5 min but became dissociated by 45 min. In comparison, it took at least 15 min of ANG II treatment for an increase in NHE3 activity and NHE3 surface expression. The stimulation of NHE3 by ANG II was dependent on changes in [Ca2+]i and Ca2+/calmodulin-dependent protein kinases II. Inhibition of CaMKII completely blocked the ANG II-induced binding of IRBIT to NHE3 and the increase in NHE3 surface abundance. Several serine residues of IRBIT are thought to be important for IRBIT binding. Mutations of Ser-68, Ser-71, and Ser-74 of IRBIT decreased binding of IRBIT to NHE3 and its effect on NHE3 activity. In conclusion, our current findings demonstrate that IRBIT is critically involved in mediating activation of NHE3 by ANG II via a Ca2+/calmodulin-dependent protein kinases II-dependent pathway.  相似文献   

5.

Background

Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.

Methods/Principal Findings

Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM) added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2 ●-/H2O2) levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively) were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2 ●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2 ●-/H2O2.

Conclusions

Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2 ●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in cardiac muscle.  相似文献   

6.
The present study examined whether 20-hydroxyeicosatetraenoic acid (HETE) contributes to the vasoconstrictor effect of angiotensin II (ANG II) in renal microvessels by preventing activation of the large conductance Ca2+-activated K+ channel (KCa) in vascular smooth muscle (VSM) cells. ANG II increased the production of 20-HETE in rat renal microvessels. This response was attenuated by the 20-HETE synthesis inhibitors, 17-ODYA and HET0016, a phospholipase A2 inhibitor AACOF3, and the AT1 receptor blocker, Losartan, but not by the AT2 receptor blocker, PD123319. ANG II (10-11 to 10-6 M) dose-dependently decreased the diameter of renal microvessels by 41 ± 5%. This effect was blocked by 17-ODYA. ANG II (10-7 M) did not alter KCa channel activity recorded from cell-attached patches on renal VSM cells under control conditions. However, it did reduce the NPo of the KCa channel by 93.4 ± 3.1% after the channels were activated by increasing intracellular calcium levels with ionomycin. The inhibitory effect of ANG II on KCa channel activity in the presence of ionomycin was attenuated by 17-ODYA, AACOF3, and the phospholipase C (PLC) inhibitor U-73122. ANG II induced a peak followed by a steady-state increase in intracellular calcium concentration in renal VSM cells. 17-ODYA (10-5 M) had no effect on the peak response, but it blocked the steady-state increase. These results indicate that ANG II stimulates the formation of 20-HETE in rat renal microvessels via the AT1 receptor activation and that 20-HETE contributes to the vasoconstrictor response to ANG II by blocking activation of KCa channel and facilitating calcium entry.  相似文献   

7.
Nitric oxide, a gaseous free radical, is poorly reactive with most biomolecules but highly reactive with other free radicals. Its ability to scavenge peroxyl and other damaging radicals may make it an important antioxidant in vivo, particular in the cardiovascular system, although this ability has been somewhat eclipsed in the literature by a focus on the toxicity of peroxynitrite, generated by reaction of O·-2 with NO· (or of NO- with O2). On balance, experimental and theoretical data support the view that ONOO- can lead to hydroxyl radical (OH·) generation at pH 7.4, but it seems unlikely that OH· contributes much to the cytotoxicity of ONOO-. The cytotoxicity of ONOO- may have been over-emphasized: its formation and rapid reaction with antioxidants may provide a mechanism of using NO· to dispose of excess O·-2, or even of using O·-2 to dispose of excess NO·, in order to maintain the correct balance between these radicals in vivo. Injection or instillation of “bolus” ONOO- into animals has produced tissue injury, however, although more experiments generating ONOO- at steady rates in vivo are required. The presence of 3-nitrotyrosine in tissues is still frequently taken as evidence of ONOO- generation in vivo, but abundant evidence now exists to support the view that it is a biomarker of several “reactive nitrogen species”. Another under-addressed problem is the reliability of assays used to detect and measure 3-nitrotyrosine in tissues and body fluids: immunostaining results vary between laboratories and simple HPLC methods are susceptible to artefacts. Exposure of biological material to low pH (e.g. during acidic hydrolysis to liberate nitrotyrosine from proteins) or to H2O2 might cause artefactual generation of nitrotyrosine from NO-2 in the samples. This may be the origin of some of the very large values for tissue nitrotyrosine levels quoted in the literature. Nitrous acid causes not only tyrosine nitration but also DNA base deamination at low pH: these events are relevant to the human stomach since saliva and many foods are rich in nitrite. Several plant phenolics inhibit nitration and deamination in vitro, an effect that could conceivably contribute to their protective effects against gastric cancer development.  相似文献   

8.
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2) reduction by Fe(II)-CBS to form Fe(II)NO-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO and peroxynitrite.  相似文献   

9.
Summary The effects of intracerebroventricular (icv) injections of 10 ng angiotensin II (ANG II) on mean arteriolar diameter and spontaneous arteriolar vasomotion were studied in subcutaneous tissue of conscious, restrained hamsters, using the skin fold window chamber preparation. Angiotensin II caused a significant decrease in mean arteriolar diameter which was associated with a significant elevation in the amplitude of vasomotion. The frequency of vasomotion did not change significantly. The central ANG II-induced effects on arteriolar vasomotion were not significantly altered by continuous intravenous (iv) infusion of hexamethonium (1 mg · kg–1 · min–1). In contrast, iv bolus injection of the vascular vasopressin receptor antagonist d(CH2)5Tyr(Me)AVP (10 g · kg–1) 5 min prior to icv injection of ANG II significantly attenuated the effects of the neuropeptide on mean arteriolar diameter and the amplitude of vasomotion. These data indicate that central ANG II stimulation enhances arteriolar vasomotion in peripheral subcutaneous tissue of conscious hamsters and that this effect may be mediated by release of vasopressin.  相似文献   

10.
Angiotensin II (ANG II) has been implicated in the pathogenesis of diabetic micro- and macrovascular disease. In vascular smooth muscle cells (VSMCs), ANG II phosphorylates and degrades insulin receptor substrate-1 (IRS-1). While the pathway responsible for IRS-1 degradation in this system is unknown, c-Jun NH(2)-terminal kinase (JNK) has been linked with serine phosphorylation of IRS-1 and insulin resistance. We investigated the role of JNK in ANG II-induced IRS-1 phosphorylation, degradation, Akt activation, glucose uptake, and hypertrophic signaling, focusing on three IRS-1 phosphorylation sites: Ser302, Ser307, and Ser632. Maximal IRS-1 phosphorylation on Ser632 occurred at 5 min, on Ser307 at 30 min, and on Ser302 at 60 min. The JNK inhibitor SP600125 reduced ANG II-induced IRS-1 Ser307 phosphorylation (by 80%), IRS-1 Ser302 phosphorylation (by 70%), and IRS-1 Ser632 phosphorylation (by 50%). However, JNK inhibition had no effect on ANG II-mediated IRS-1 degradation, nor did it reverse the ANG II-induced decrease in Akt phosphorylation or glucose uptake. Transfection of VSMCs with mutants S307A, S302A, or S632A of IRS-1 did not block ANG II-mediated IRS-1 degradation. In contrast, JNK inhibition attenuated insulin-induced upregulation of collagen and smooth muscle α-actin in ANG II-pretreated cells. We conclude that phosphorylation of Ser307, Ser302, and Ser632 of IRS-1 is not involved in ANG II-mediated IRS-1 degradation, and that JNK alone does not mediate ANG II-stimulated IRS-1 degradation, but rather is responsible for the hypertrophic effects of insulin on smooth muscle.  相似文献   

11.
The present study demonstrates that manganese superoxide dismutase (MnSOD) (Escherichia coli), binds nitric oxide (NO) and stimulates its decay under both anaerobic and aerobic conditions. The results indicate that previously observed MnSOD-catalyzed NO disproportionation (dismutation) into nitrosonium (NO+) and nitroxyl (NO? ) species under anaerobic conditions is also operative in the presence of molecular oxygen. Upon sustained aerobic exposure to NO, MnSOD-derived NO? species initiate the formation of peroxynitrite (ONOO? ) leading to enzyme tyrosine nitration, oxidation and (partial) inactivation. The results suggest that both ONOO? decomposition and ONOO? -dependent tyrosine residue nitration and oxidation are enhanced by metal centre-mediated catalysis. We show that the generation of ONOO? is accompanied by the formation of substantial amounts of H2O2. MnSOD is a critical mitochondrial antioxidant enzyme, which has been found to undergo tyrosine nitration and inactivation in various pathologies associated with the overproduction of NO. The results of the present study can account for the molecular specificity of MnSOD nitration in vivo. The interaction of NO with MnSOD may represent a novel mechanism by which MnSOD protects the cell from deleterious effects associated with overproduction of NO.  相似文献   

12.
SM Kim  YG Kim  KH Jeong  SH Lee  TW Lee  CG Ihm  JY Moon 《PloS one》2012,7(7):e39739
Angiotensin II (Ang II)-induced activation of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase leads to increased production of reactive oxygen species (ROS), an important intracellular second messenger in renal disease. Recent findings suggest that Ang II induces mitochondrial depolarization and further amplifies mitochondrial generation of ROS. We examined the hypothesis that ROS injury mediated by Ang II-induced mitochondrial Nox4 plays a pivotal role in mitochondrial dysfunction in tubular cells and is related to cell survival. In addition, we assessed whether angiotensin (1-7) peptide (Ang-(1-7)) was able to counteract Ang II-induced ROS-mediated cellular injury. Cultured NRK-52E cells were stimulated with 10(-6) M Ang II for 24 h with or without Ang-(1-7) or apocynin. Ang II simulated mitochondrial Nox4 and resulted in the abrupt production of mitochondrial superoxide (O(2) (-)) and hydrogen peroxide (H(2)O(2)). Ang II also induced depolarization of the mitochondrial membrane potential, and cytosolic secretion of cytochrome C and apoptosis-inducing factor (AIF). Ang-(1-7) attenuated Ang II-induced mitochondrial Nox4 expression and apoptosis, and its effect was comparable to that of the NAD(P)H oxidase inhibitor. These findings suggest that Ang II-induced activation of mitochondrial Nox4 is an important endogenous source of ROS, and is related to cell survival. The ACE2-Ang-(1-7)-Mas receptor axis should be investigated further as a novel target of Ang II-mediated ROS injury.  相似文献   

13.
We have studiedGq-linked ANG II signaling [inositol phosphate (IP)accumulation, Ca2+ mobilization] in primary cultures ofrat cardiac fibroblasts (CFs) and have found that ANG II initiates aprotein kinase C (PKC)-mediated negative feedback loop that rapidlyterminates the ANG II response. Pharmacological inhibition of PKC bystaurosporine and GF-109203X doubled IP production over that achievedin response to ANG II alone. Inhibition of PKC also led to largerCa2+ transients in response to ANG II, suggesting thatCa2+ mobilization was proportional toGq-phospholipase C-IP3 activity underthe conditions studied. Depletion of cellular PKC by overnight treatment with phorbol 12-myristate 13-acetate (PMA) similarly augmented ANG II-induced IP production. Acute activation of PKC by PMAhalved IP formation, with an EC501 nM; 4-PMA wasinactive. Time course data demonstrated that ANG II-mediated IPproduction fully desensitized within 30 s; PKC inhibition reducedthe rate and extent of this desensitization. In cells desensitized toANG II, a purinergic agonist still mobilized intracellularCa2+, indicating that desensitization was homologous. TheANG II-induced Ca2+ signal was fully resensitized within 30 min. The data demonstrate that a large portion of theIP-Ca2+ responses of rat CFs to ANG II are short-livedbecause of rapid, PKC-mediated desensitization.

  相似文献   

14.
Abstract

Two synthetic analogues of angiotensin II (ANG II) with an extended N-terminus, (Sar)5-ANG II and (Pro)3-ANG II, have been tested in vitro for their ability to bind to ANG II receptors, to raise cytosolic free calcium concentration, (Ca++]i, and to induce a biological response in bovine adrenal zona glomerulosa cells and in cultured rat aortic smooth muscle cells. The results indicate that the two analogues did not behave identically In these two target cells for ANG II. On one hand, in the adrenal cortex, (Sar)5-ANG II and (Pro)3-ANG II were very weak agonists and (Sar)5-ANG II could even be used as an antagonist of ANG II-induced aldosterone production. On the other hand, both peptides were almost as potent as ANG II in vascular smooth muscle cells, with respect to signal messenger generation and prostacyclin synthesis. Such peptides may be useful tools in the elucidation of the differences among ANG II receptors from various target tissues.  相似文献   

15.
Peroxynitrite (ONOO-) is a reactive oxidant formed from superoxide (?O2-) and nitric oxide (?NO), that can oxidize several cellular components, including essential protein, non-protein thiols, DNA, low-density lipoproteins (LDL), and membrane phospholipids. ONOO- has contributed to the pathogenesis of diseases such as stroke, heart disease, Alzheimer's disease, and atherosclerosis. Because of the lack of endogenous enzymes to thwart ONOO- activation, developing a specific ONOO- scavenger is remarkably important. In this study, the ability of hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) to scavenge ONOO- and to protect cells against ONOO- and ROS was investigated. The data gained show that hesperetin can efficiently scavenge authentic ONOO-. In spectrophotometric analysis, the data revealed that hesperetin led to declined ONOO--mediated nitration of tyrosine through electron donation. Hesperetin exhibited significant inhibition on the nitration of bovine serum albumin (BSA) by ONOO- in a dose-dependent manner. Hesperetin also manifested cytoprotection from cell damage induced by ONOO- and ROS. The present study suggests that hesperetin is a powerful ONOO- scavenger and promotes cellular defense activity in the protection against ONOO- involved diseases.  相似文献   

16.
We investigated the contribution of cytochrome P-450 1B1 (CYP1B1) to renal dysfunction and organ damage associated with ANG II-induced hypertension in rats. ANG II (300 ng·kg(-1)·min(-1)) or vehicle were infused for 2 wk, with daily injections of a selective CYP1B1 inhibitor, 2,4,3',5'-tetramethoxystilbene (TMS; 300 μg/kg ip), or its vehicle. ANG II increased blood pressure and renal CYP1B1 activity that were prevented by TMS. ANG II also increased water intake and urine output, decreased glomerular filtration rate, increased urinary Na(+) and K(+) excretion, and caused proteinuria, all of which were prevented by TMS. ANG II infusion caused hypertrophy, endothelial dysfunction, and increased reactivity of renal and interlobar arteries to vasoconstrictor agents and renal vascular resistance and interstitial fibrosis as indicated by accumulation of α-smooth muscle actin, fibronectin, and collagen, and inflammation as indicated by increased infiltration of CD-3(+) cells; these effects were inhibited by TMS. ANG II infusion also increased production of reactive oxygen species (ROS) and activities of NADPH oxidase, ERK1/2, p38 MAPK, and c-Src that were prevented by TMS. TMS alone had no effect on any of the above parameters. These data suggest that CYP1B1 contributes to the renal pathophysiological changes associated with ANG II-induced hypertension, most likely via increased ROS production and activation of ERK1/2, p38 MAPK, and c-Src and that CYP1B1 could serve as a novel target for treating renal disease associated with hypertension.  相似文献   

17.
18.
Declined vasorelaxation function in aging resistance arteries is responsible for aging-related multiple organ dysfunctions. The aim of the present study is to explore the role of peroxynitrite (ONOO-) in aging resistance arterial vasorelaxation dysfunction and the possible mechanism. In the present study, young (3–4 months olds) and aging (20 months olds) male SD rats were randomized to receive vehicle (Saline) or FeTMPyP (ONOO- scavenger) for 2 weeks. The vasorelaxation of resistance arteries was determined in vitro; NOx level was tested by a colorimetric assay; the expression of nitrotyrosine (NT), soluble Guanylate Cyclase (sGC), vasodilator-stimulated phosphoprotein (VASP), phosphorylated VASP (P-VASP) and cGMP in resistance arteries were detected by immunohistochemical staining. In the present study, endothelium-dependent dilation in aging resistance arteries was lower than in those from young rats (young vs. aging: 68.0%±4.5% vs. 50.4%±2.9%, P<0.01). And the endothelium-independent dilation remained constant. Compared with young rats, aging increased nitrative stress in resistance arteries, evidenced by elevated NOx production in serum (5.3±1.0 nmol/ml vs. 3.3±1.4 nmol/ml, P<0.05) and increased NT expression (P<0.05). ONOO- was responsible for the vasorelaxation dysfunction, evidenced by normalized vasorelaxation after inhibit ONOO- or its sources (P<0.05) and suppressed NT expression after FeTMPyP treatment (P<0.05). The expression of sGC was not significantly different between young and aging resistance arteries, but the cGMP level and P-VASP/VASP ratio (biochemical marker of NO-sGC-cGKs signaling) decreased, which was reversed by FeTMPyP treatment in vivo (P<0.05). The present study suggested that ONOO- mediated the decline of endothelium-dependent vasorelaxation of aging resistance arteries by induction of the NO-sGC-cGKs pathway dysfunction.  相似文献   

19.
Microparticles are small fragments of the plasma membrane generated after cell stimulation. We recently showed that Sonic hedgehog (Shh) is present in microparticles generated from activated/apoptotic human T lymphocytes and corrects endothelial injury through nitric oxide (NO) release. This study investigates whether microparticles bearing Shh correct angiotensin II-induced hypertension and endothelial dysfunction in mice. Male Swiss mice were implanted with osmotic minipumps delivering angiotensin II (0.5 mg/kg/day) or NaCl (0.9%). Systolic blood pressure and heart rate were measured daily during 21 days. After 7 day of minipump implantation, mice received i.v. injections of microparticles (10 µg/ml) or i.p. Shh receptor antagonist cyclopamine (10 mg/kg/2 days) during one week. Angiotensin II induced a significant rise in systolic blood pressure without affecting heart rate. Microparticles reversed angiotensin II-induced hypertension, and cyclopamine prevented the effects of microparticles. Microparticles completely corrected the impairment of acetylcholine- and flow-induced relaxation in vessels from angiotensin II-infused mice. The improvement of endothelial function induced by microparticles was completely prevented by cyclopamine treatment. Moreover, microparticles alone did not modify NO and O2 . - production in aorta, but significantly increased NO and reduced O2 . - productions in aorta from angiotensin II-treated mice, and these effects were blocked by cyclopamine. Altogether, these results show that microparticles bearing Shh correct angiotensin II-induced hypertension and endothelial dysfunction in aorta through a mechanism associated with Shh-induced NO production and reduction of oxidative stress. These microparticles may represent a new therapeutic approach in cardiovascular diseases associated with decreased NO production.  相似文献   

20.
In our previous report (Biochem. Biophys. Res. Commun. 165(3), 1221-1228, 1989), we have demonstrated the biphasic increase of intracellular free calcium concentration ([Ca++]i) induced by angiotensin II (ANG II) in isolated rat early proximal tubule (S1). The present study was undertaken to determine the effect of HgCl2 on ANG II-induced [Ca++]i increase using Fura-2. HgCl2 (10(-10) M2-10(-8) M) potentiated the [Ca++]i increase induced by ANG II (10(-11) M) in a dose-dependent manner. To determine the mechanism of stimulatory effect by HgCl2 on ANG II-induced [Ca++]i increase, nephron segments were pretreated with 10(-4) M propranolol, a phospholipase C inhibitor. The stimulatory effect by 10(-9) M HgCl2 in 10(-11) M ANG II-induced [Ca++]i increase was completely inhibited by propranolol. Moreover, 10(-4) M propranolol completely blocked the stimulatory effect of HgCl2 on ANG II-mediated IP3 production. This study suggests for the first time that HgCl2 stimulates the [Ca++]i increment induced by ANG II, possibly through an activation of phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号