首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

2.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

3.
Cellular signaling pathways exhibit complex response profiles with features such as thresholds and steep activation (i.e., ultrasensitivity). In a reconstituted mitotic spindle orientation pathway, activation of Drosophila Pins (LGN in mammals) by Gαi is ultrasensitive (apparent Hill coefficient of 3.1), such that Pins recruitment of the microtubule binding protein Mud (NuMA) occurs over a very narrow Gαi concentration range. Ultrasensitivity is required for Pins function in neuroblasts as a nonultrasensitive Pins mutant fails to robustly couple spindle position to cell polarity. Pins contains three Gαi binding GoLoco domains (GLs); Gαi binding to GL3 activates Pins, whereas GLs 1 and 2 shape the response profile. Although cooperative binding is one mechanism for generating ultrasensitivity, we find GLs 1 and 2 act as "decoys" that compete against activation at GL3. Many signaling proteins contain multiple protein interaction domains, and the decoy mechanism may be a common method for generating ultrasensitivity in regulatory pathways.  相似文献   

4.
Shim M  Cohen P 《Hormone research》1999,51(Z3):42-51
Perturbations of the insulin-like growth factor (IGF) axis, including the autocrine production of IGFs, IGF binding proteins (IGFBPs) and IGFBP proteases such as prostate specific antigen (PSA), and cathepsin D have been identified in prostate, lung and breast cancer cells and tissues. Serum IGFBP-3 levels have been found to be negatively correlated to the risk of cancer. Interestingly, IGFBP-3 is a potent inhibitor of IGF action and also mediates apoptosis via an IGF-independent mechanism. Recent case-control studies have found an approximately 10% increase in the serum levels of IGF-I in patients with prostate, breast and lung cancers, which are among the most frequently diagnosed cancers. While the studies indicate an association between serum IGF-I levels and cancer risk, causality has not been established. Thus, serum IGF-I level may actually be a confounding variable, serving as a marker for autocrine tissue IGF-I production. Growth hormone (GH) therapy raises both IGF-I and IGFBP-3 levels in serum. However, the role of GH in controlling prostate, breast and lung growth and carcinogenesis remains unclear from animal studies. Increased GH levels as seen in acromegaly have been associated with benign prostatic hyperplasia but not with prostate, breast or lung cancers, although colon cancer mortality may be increased. Should serum IGF-I levels be proven to play a causal role in the pathogenesis of cancer, interpreting the risk associated with therapies such as GH replacement must take into account both the duration of exposure and the risk magnitude associated with the degree of serum IGF-I elevation. Since GH-deficient patients often have a subnormal IGF-I serum level, which normalizes on therapy, their cancer risk on GH therapy probably does not increase substantially above that of the normal population. Until further research in the area dictates otherwise, ongoing surveillance and routine monitoring of IGF-I levels in GH recipients should become standard of care.  相似文献   

5.
6.
7.
During the last decade, involvement of growth hormone (GH), insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied. This review provides an update on the GH, IGF system and their role in ovarian follicular development. In vitro studies and knockout experiments demonstrated an important role of GH in preantral follicle growth and differentiation through their binding with GH receptors, which are located both in the oocyte and follicular somatic tissues. Furthermore, GH stimulates the development of small antral follicles to gonadotrophin-dependent stages, as well as maturation of oocytes. With regard to the IGF system, IGF-I has no effects on primordial follicle development, but both IGF-I and IGF-II stimulate growth of secondary follicles. Depending on the species studies and method used, these proteins have been detected in oocytes and/or somatic cells. In antral follicles, these IGFs stimulate granulosa cell proliferation and steroidogenesis in most mammals. The bioavailability of IGFs is regulated by a family of intrafollicular expressed IGF binding proteins (IGFBPs). Facilitation of IGF can be increased through the activity of specific IGFBP proteases, which degrade the IGF/IGFBP complex, resulting in the production of IGFBP fragments and release of attached IGF.  相似文献   

8.
9.
There have been no studies in any vertebrate that have localized insulin-like growth factor (IGF)-I receptors in prolactin (PRL) cells or that have correlated pituitary binding to the potency of IGF-I in regulating both PRL and growth hormone (GH) secretion. We show that IGF-I binds with high affinity and specificity to the pituitary gland of hybrid striped bass (Morone saxatilis x M. chrysops). IGF-I and IGF-II were equipotent in inhibiting saturable (125)I-IGF-I binding, whereas insulin was ineffective. IGF-I binds with similar affinity to the rostral pars distalis (>95% PRL cells) as the whole pituitary gland and immunohistochemistry colocalizes IGF-I receptors and PRL in this same region. Des(1-3)IGF-I, a truncated analog of IGF-I that binds with high affinity to IGF-I receptors but weakly to IGF-I binding proteins (IGFBPs), showed a similar inhibition of saturable (125)I-IGF-I binding, but it was more potent than IGF-I in stimulating PRL and inhibiting GH release. These results are the first to localize IGF-I receptors to PRL cells, correlate IGF-I binding to its efficacy in regulating GH and PRL secretion, as well as demonstrate that IGFBPs may play a significant role in modulating the disparate actions of IGF-I on PRL and GH secretion.  相似文献   

10.
Although cardiac effects of growth hormone (GH) and insulin-like growth factor (IGF)-I have been reported in experimental models of heart failure and in human dilated cardiomyopathy, the IGF system has not been comprehensively assessed in the failing heart. We therefore localized the IGF system in the left ventricle during congestive heart failure after myocardial infarction (MI) in the rat. The left anterior descending coronary artery was ligated in adult female Sprague-Dawley rats and hearts were examined after 6 months when congestive heart failure had developed. In situ hybridization histochemistry was used to localize mRNA for the components of the IGF system in the left ventricle of sham and congestive heart failure animals. We were able to detect changes in the spatial distribution of mRNA for IGF-I and IGF binding proteins 3, 4, 5, and 6 in the left ventricle during congestive heart failure after MI. IGF-I and the binding proteins were predominantly increased in the infarct/peri-infarct area of the left ventricle. Other components of the IGF system were indistinguishable from the low to undetectable levels in sham-operated rats. These results demonstrate that the IGF system is altered in the failing heart and suggest that the IGF system plays an important role in the response of the heart to MI and consequent failure.  相似文献   

11.
Following tissue injury, a fibrin network formed at the wound site serves as a scaffold supporting the early migration of stromal cells needed for wound healing. Growth factors such as insulin-like growth factor-I (IGF-I) concentrate in wounds to stimulate stromal cell function and proliferation. The ability of IGF-binding proteins (IGFBPs) such as IGFBP-3 to reduce the rate of IGF-I clearance from wounds suggests that IGFBP-3 might bind directly to fibrinogen/fibrin. Studies presented here show that IGFBP-3 does indeed bind to fibrinogen and fibrin immobilized on immunocapture plates, with K(d) values = 0.67 and 0.70 nM, respectively, and competitive binding studies suggest that the IGFBP-3 heparin binding domain may participate in this binding. IGF-I does not compete for IGFBP-3 binding; instead, IGF-I binds immobilized IGFBP-3.fibrinogen and IGFBP-3.fibrin complexes with affinity similar to that of IGF-I for the type I IGF receptor. In the presence of plasminogen, most IGFBP-3 binds directly to fibrinogen, although 35-40% of the IGFBP-3 binds to fibrinogen-bound plasminogen. IGFBP-3 also binds specifically to native fibrin clots, and addition of exogenous IGFBP-3 increases IGF-I binding. These studies suggest that IGF-I can concentrate at wound sites by binding to fibrin-immobilized IGFBP-3, and that the lower IGF affinity of fibrin-bound IGFBP-3 allows IGF-I release to type I IGF receptors of stromal cells migrating into the fibrin clot.  相似文献   

12.
Regulation of the production of insulin-like growth factor (IGF)-I, IGF-II, IGF binding proteins (IGFBPs), and their related proteins by various hormones was investigated in primary cultures of rat liver parenchymal and nonparenchymal cells.

Freshly isolated parenchymal cells contained mRNAs of IGF-I, IGF-II, IGFBP-1, IGFBP-4, growth hormone (GH) receptor, and the acid-labile subunit (ALS), which forms a ternary complex with IGF-I and IGFBP-3; however, parenchymal cells did not express the IGFBP-3 gene. In contrast, nonparenchymal cells contained IGFBP-3 mRNA exclusively, as we reported previously [Takenaka et al. Agric. Biol. Chem., 55, 1191–1193 (1991)]. Cultured rat parenchymal cells produced IGF-I, IGFBP-1, and IGFBP-4 prominently. In these cells, secretion of IGF-I and the content of IGF-I mRNA was greatly increased in the presence of GH in the medium. Insulin also increased the production of IGF-I. Secretion of IGFBP-l into the medium was enhanced by treatment with glucagon, dibutyrylcyclic AMP (Bu2cAMP), and dexamethasone (Dex) and these enhancements with glucagon and Dex reflected the increase in its mRNA content. Insulin depressed the secretion of IGFBP-l. The content of IGFBP-4 in the parenchymal cells was increased by insulin, Bu2cAMP, and triiodothyronine (T3), thereby enhancing the production of IGFBP-4 and secretion into the medium. Cultured liver nonparenchymal cells of rats produced IGFBP-1, IGFBP-3, and IGFBP-4. Secretion of IGFBP-l was increased by Bu2cAMP in the medium, that of IGFBP-3 by IGF-I, and that of IGFBP-4 by both IGF-I and Bu2cAMP. Regulation of the production of IGFBP-3 by IGF-I was demonstrated in these investigations.

These results suggest that GH increases production of IGF-I in the parenchymal cells and this IGF-I, in turn, increases the production of IGFBP-3 in nonparenchymal cells. As we found GH also increases ALS production in parenchymal cells, by these mechanisms, GH increases the formation of the ternary complex of IGF-I, IGFBP-3, and ALS. This study clearly demonstrates the interrelationship between parenchymal and nonparenchymal cells in the production of IGF-I and IGFBPs in the liver.  相似文献   

13.
Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. The aim of this work was to study the effects of adjuvant-induced arthritis on GH and insulin-like growth factor-I (IGF-I). Arthritis was induced by an intradermal injection of complete Freund's adjuvant and rats were killed 18 and 22 days later. IGF-I and GH levels were measured by radioimmunoassay. Pituitary GH mRNA was analyzed by northern blot and IGF binding proteins (IGFBPs) by western blot. Arthritic rats showed a decrease in both serum and hepatic concentrations of IGF-I. On the contrary, arthritis increased the circulating IGFBPs. The serum concentration of IGF-I in the arthritic rats was negatively correlated with the body weight loss observed in these animals. Arthritis decreased the serum concentration of GH and this decrease seems to be due to an inhibition of GH synthesis, since pituitary GH mRNA content was decreased in arthritic rats (p<0.01). These data suggest that the decrease in body weight gain in arthritic rats may be, at least in part, secondary to the decrease in GH and IGF-I secretion. Furthermore, the increased serum IGFBPs may also be involved in the disease process.  相似文献   

14.
It is known that growth hormone (GH) plays an important role in growth and development.Additionally, emerging evidence suggest that it also influences hypothalamic-pituitary-gonadal function. We have found that GH from different species has different effects in mice. In rodents, human GH (hGH) binds to both GH and prolactin (PRL) receptors; it has both somatotrophic and lactotrophic effects. Since PRL has a profound effect on neuroendocrine function, the results obtained from hGH treatment or from transgenic animals expressing the hGH gene reflect PRL-like effects of this hormone. However, bovine GH (bGH) is purely somatogenic and therefore the effects of bGH represent the function of the natural GH produced in rodents. Furthermore, our studies in mice and rats have shown that not all effects of GH are stimulatory and the duration of exposure of the hypothalamo-hypophyseal-gonadal system to GH might influence the secretions of gonadotropins and gonadal steroids. In humans, excess productions of GH in acromegaly and GH resistance in Laron syndrome adversely affect reproduction. Similarly, it has been demonstrated that in transgenic mice expressing various GH genes, in insulin-like growth factor-I (IGF-I) gene-knockout mice, in GH receptor gene-disrupted (GHR-KO) mice, and in Ames dwarf mice the onset of puberty and/or fertility is altered. Therefore, excess or subnormal secretion of GH can affect reproduction. We have shown that the hypothalamic-pituitary functions are affected in transgenic mice expressing the GH genes, Ames dwarf mice and in GH receptor gene knockout mice. The majority of the GH effects are mediated via IGF-I and the aforementioned effects may be due to the GH-induced IGF-I secretion or due to the absence of this peptide production. It is important to realize that the syntheses and actions of IGF binding proteins are controlled by IGF-I. Furthermore, some IGF binding proteins can inhibit IGF-I action. Therefore, the concentrations of IGF binding proteins and the ratio of these binding proteins and IGF-I within the body might play a pivotal role in modulating IGF-I effects on the neuroendocrine-gonadal system.  相似文献   

15.
To characterize and study the variations of IGF-I binding during the development of trout muscle cells, in vitro experiments were conducted using myocyte cultures, and IGF-I binding assays were performed in three stages of cell development: mononuclear cells (day 1), small myotubes (day 4), and large myotubes (day 10). Binding experiments were done by incubating cells with IGF-I for 12 h at 4 degrees C. Specific IGF-I binding increased with the concentration of labeled IGF-I and reached a plateau at 32 pM. The displacement of cold human and trout IGF-I showed a very similar curve (EC(50) = 1.19 +/- 0.05 and 0.95 +/- 0.05 nM, respectively). IGF binding proteins did not interfere significantly because displacement of labeled IGF-I by either cold trout recombinant IGF-I or Des (1-3) IGF-I resulted in similar curves. Insulin did not displace labeled IGF-I even at very high concentrations (>1 microM), which indicates the specificity of IGF-I binding. The amount of receptor (R(0)) increased from 253 +/- 51 fmol/mg DNA on day 1 to 766 +/- 107 fmol/mg DNA on day 10. However, the affinity (K(d)) of IGF-I receptors did not change significantly during this development (from 1.29 +/- 0.19 to 0.79 +/- 0.13 nM). On the basis of our results, we conclude that rainbow trout muscle cells in culture express specific IGF-I receptors, which increase their number with development from mononuclear cells to large myotubes.  相似文献   

16.
We have previously reported (Bauer MK, Breier BH, Bloomfield FH, Jensen EC, Gluckman PD, and Harding JE. J Endocrinol 177: 83-92, 2003) that a chronic pulsatile infusion of growth hormone (GH) to intrauterine growth-restricted (IUGR) ovine fetuses increased fetal circulating IGF-I levels without increasing fetal growth. We hypothesized a cortisol-induced upregulation of fetal hepatic GH receptor (GH-R) mRNA levels, secondary increases in IGF-I mRNA levels, and circulating IGF-I levels, but a downregulation of the type I IGF receptor (IGF-IR) as an explanation. We, therefore, measured mRNA levels of genes of the somatotrophic axis by real-time RT-PCR in fetal and placental tissues of fetuses with IUGR (induced by uteroplacental embolization from 110- to 116-days gestation) that received either a pulsatile infusion of GH (total dose 3.5 mg/day) or vehicle from 117-126 days and in control fetuses (n = 5 per group). Tissues were collected at 127 days (term, 145 days). Fetal cortisol concentrations were significantly increased in IUGR fetuses. However, in liver, GH-R, but not IGF-I or IGF-IR, mRNA levels were decreased in both IUGR groups. In contrast, in placenta, GH-R, IGF-I, and IGF-IR expression were increased in IUGR vehicle-infused fetuses. GH infusion further increased placental GH-R and IGF-IR, but abolished the increase in IGF-I mRNA levels. GH infusion reduced IGF-I expression in muscle and increased GH-R but decreased IGF-IR expression in kidney. IUGR increased hepatic IGF-binding protein (IGFBP)-1 and placental IGFBP-2 and -3 mRNA levels with no further effect of GH infusion. In conclusion, the modest increases in circulating cortisol concentrations in IUGR fetuses did not increase hepatic GH-R mRNA expression and, therefore, do not explain the increased circulating IGF-I levels that we found with GH infusion, which are likely due to reduced clearance rather than increased production. We demonstrate tissue-specific regulation of the somatotrophic axis in IUGR fetuses and a discontinuity between GH-R and IGF-I gene expression in GH-infused fetuses that is not explained by alterations in phosphorylated STAT5b.  相似文献   

17.
Cellular decision-making is driven by dynamic behaviours, such as the preparations for sunrise enabled by circadian rhythms and the choice of cell fates enabled by positive feedback. Such behaviours are often built upon ultrasensitive responses where a linear change in input generates a sigmoidal change in output. Phosphorylation-dephosphorylation cycles are one means to generate ultrasensitivity. Using bioinformatics, we show that in vivo levels of kinases and phosphatases frequently exceed the levels of their corresponding substrates in budding yeast. This result is in contrast to the conditions often required by zero-order ultrasensitivity, perhaps the most well known means for how such cycles become ultrasensitive. We therefore introduce a mechanism to generate ultrasensitivity when numbers of enzymes are higher than numbers of substrates. Our model combines distributive and non-distributive actions of the enzymes with two-stage binding and concerted allosteric transitions of the substrate. We use analytical and numerical methods to calculate the Hill number of the response. For a substrate with phosphosites, we find an upper bound of the Hill number of , and so even systems with a single phosphosite can be ultrasensitive. Two-stage binding, where an enzyme must first bind to a binding site on the substrate before it can access the substrate''s phosphosites, allows the enzymes to sequester the substrate. Such sequestration combined with competition for each phosphosite provides an intuitive explanation for the sigmoidal shifts in levels of phosphorylated substrate. Additionally, we find cases for which the response is not monotonic, but shows instead a peak at intermediate levels of input. Given its generality, we expect the mechanism described by our model to often underlay decision-making circuits in eukaryotic cells.

Authors Summary

Dose-response curves are said to be ultrasensitive when they are sigmoidal rather than hyperbolic and often underlay cellular decision-making circuits. Zero-order ultrasensitivity is a well-known mechanism to generate sigmoidal curves in phosphorylation cycles, but one of its assumptions often implies that the substrate is more abundant than the modifying enzymes. We show that this assumption is unlikely to always hold in vivo, and we present a general model that generates ultrasensitivity when the enzymes are in excess of their substrate. The model combines conformational allosteric transitions of the substrate with two-stage binding of the enzymes: the enzymes bind first to a docking site on the substrate and then to the substrate''s phosphosites. Ultrasensitivity is generated because the kinase can bind to the fully phosphorylated form of the substrate (at its docking site) and sequester the substrate away from the phosphatase and, similarly, the phosphatase can bind to the fully dephosphorylated form of the substrate and sequester the substrate away from the kinase. The number of kinase-phosphatase competitions for the substrate determines the degree of ultrasensitivity. Finally, we show that this model can generate non-monotonic responses that peak at intermediate levels of input.  相似文献   

18.
19.
Growth hormone (GH)-transgenic mice provide a model for studying hormonal regulation of gene products responsible for efficient lean growth. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (BP-3) are two products involved in mediating the growth promoting actions of GH. Mice carrying the ovine metallothionein la-ovine growth hormone (oMtla-oGH) transgene were used to study GH regulation of IGF-I and PB-3 expression because these mice do not exhibit elevated basal oGH levels without transgene stimulation by exogenous zinc. C57B1/6XCBA mice with (transgenic=TG) and without (control=C) the oMtla-oGH transgene were activated (+Zn) or inactivated (-Zn) by the addition or removal of 25 mM zinc sulfate in the drinking water. Plasma IGF-I and BP-3 levels were determined by radioimmunoassay and western ligand blotting, respectively. Hepatic IGF-I and BP-3 mRNA levels were determined by slot-blot analysis. TG+Zn mice had higher plasma IGF-I (p<0.05) and hepatic IGF-I mRNA (p<0.05) levels as compared to TG-Zn, C+Zn and C-Zn mice. Plasma IGF-I and hepatic IGF-I mRNA levels in TG-Zn mice were not different from C+Zn and C-Zn mice. Removal of Zn decreased hepatic IGF-I mRNA levels to C levels in TG mice. Plasma BP-3 and hepatic BP-3 mRNA levels in TG+Zn mice were increased (p<0.05) as compared to TG-Zn, C-Zn and C+Zn. Plasma BP-3 and hepatic BP-3 mRNA levels did not differ between TG-Zn, C-Zn and C+Zn mice. Expression of the transgene also increased the level of plasma BP-3 during pregnancy as compared to that observed for pregnant C mice. We conclude that oGH regulates IGF-I and BP-3 expression in the oMtla-oGH transgenic mouse model system.  相似文献   

20.
The goal of this study was to find out whether GH or insulin regulate the mRNA expression of the fetal binding protein of insulin-like growth factor (IGFBP-2). Primary hepatocytes from adult rats were used as a test system. IGFBP-2 mRNA was abundant in cells cultured in the absence of hormones and markedly reduced in cultures containing insulin. Addition of GH had no effect on IGFBP-2 mRNA levels although the cells are responsive to GH as demonstrated by a GH mediated elevation of IGF l mRNA levels. Half-maximal down-regulation of IGFBP-2 mRNA levels occurred at an insulin concentration of 1 to 2 x 10(-10) M. The finding that insulin is a potent negative regulator of hepatic IGFBP-2 mRNA levels suggests a physiologically important regulatory link between the two hormones insulin and IGF l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号