首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

2.
Recently it was demonstrated that postactivation potentiation (PAP), which refers to the enhancement of the muscle twitch torque as a result of a prior conditioning contraction, increased the maximal rate of torque development of tetanic and voluntary isometric contractions (3). In this study, we investigated the effects of PAP and its decay over time on the load-velocity relation. To that purpose, angular velocity of thumb adduction in response to a single electrical stimulus (twitch), a high-frequency train of 15 pulses at 250 Hz (HFT(250)), and during ballistic voluntary shortening contractions, performed against loads ranging from 10 to 50% of the maximum torque, were recorded before and after a conditioning 6-s maximal voluntary contraction (MVC). The results showed an increase of the peak angular velocity for the different loads tested after the conditioning MVC (P < 0.001), but the effect was greatest for the twitch ( approximately 182%) compared with the HFT(250) or voluntary contractions ( approximately 14% for both contraction types). The maximal potentiation occurred immediately following the conditioning MVC for the twitch, whereas it was reached 1 min later for the tetanic and ballistic voluntary contractions. At that time, the load-velocity relation was significantly shifted upward, and the maximal power of the muscle was increased ( approximately 13%; P < 0.001). Furthermore, the results also indicated that the effect of PAP on shortening contractions was not related to the modality of muscle activation. In conclusion, the findings suggest a functional significance of PAP in human movements by improving muscle performance of voluntary dynamic contractions.  相似文献   

3.
The purpose of this study was to estimate the relative contributions of central and peripheral factors to the development of human muscle fatigue. Nine healthy subjects [five male, four female; age = 30 (2) years, mean (SE)] sustained a maximum voluntary isometric contraction (MVC) of the ankle dorsiflexor muscles for 4 min. Fatigue was quantitated as the fall in MVC. Three measures of central activation and one measure of peripheral activation (compound muscle action potential, CMAP) were made using electromyography (EMG) and electrical stimulation. Measures of intramuscular metabolism were made using magnetic resonance spectroscopy. After exercise, MVC and electrically stimulated tetanic contraction (50 Hz, 500 ms) forces were 22.2 (3.7)% and 37.3 (7.1)% of pre-exercise values, respectively. The measures of central activation suggested some central fatigue during exercise: (1) the central activation ratio [MVC/(MVC + superimposed tetanic force)] fell from 0.94 (0.03) to 0.78 (0.09), (2) the MVC/tetanic force ratio fell from 2.3 (0.7) to 1.3 (0.7), and (3) the integral of the EMG (iEMG) signal decreased to 72.6 (9.1)% of the initial value, while the CMAP amplitude was unchanged. Intramuscular pH was associated by regression with the decline in MVC force (and therefore fatigue) and iEMG. The results indicate that central factors, which were not associated with altered peripheral excitability, contributed approximately 20% to the muscle fatigue developed, with the remainder being attributable to intramuscular (i.e., metabolic) factors. The association between pH and iEMG is consistent with proton concentration as a feedback mechanism for central motor drive during maximal effort.  相似文献   

4.
Indices of electrically stimulated and maximal voluntary isometric muscle torgue and the phosphate content of myosin phosphorylatable light chains (P light chains) were studied during recovery following a 60-s maximal voluntary isometric contraction (MVC) in 21 human subjects. Analysis of muscle biopsy samples revealed that immediately after the 60-s MVC there were significant decreases in ATP (-15%) and phosphocreatine (-82%), and lactate concentration increased by 17-fold. All indices of muscle torque production were reduced by the 60-s MVC, but the twitch torque and torque at 10 Hz were relatively less reduced compared with the torque at 20 and 50 Hz or a 1-s MVC. Between 3 and 6 min of recovery, twitch torque and torque at 10 Hz stimulation were significantly potentiated, reaching peak values of 125 and 134%, respectively, compared with rest. Phosphate content of the fast and two slow P light chains was significantly increased over rest levels immediately after and 4 min after the 60-s MVC. These results suggest that myosin P light-chain phosphorylation could provide a mechanism to increase human muscle torque under conditions of submaximal contractile element activation following fatigue.  相似文献   

5.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

6.
Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle. Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0 +/- 7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0 +/- 10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension. In contrast the heart rate rose to a higher level (P less than 0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups. It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sj?holm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

7.
The role of muscle potentiation in overcoming low-frequency fatigue (LFF) as it developed during submaximal voluntary exercise was investigated in eight males (age 26.4 +/- 0.7 years, mean +/- SE) performing isometric leg extension at approximately 30% of maximal voluntary contraction for 60 min using a 0.5-duty cycle (1 s contraction, 1 s rest). At 5, 20, 40, and 60 min, exercise was interrupted for 3 min, and the maximum positive rate of force development (+dF/dtmax) and maximal twitch force (Pt) were measured in maximal twitch contractions at 0, 1, 2, and 3 min of rest (R0, R1, R2, R3); they were also measured at 15 min of recovery following the entire 60-min exercise period. These measures were compared with pre-exercise (PRE) as an indicator of potentiation. Force at low frequency (10 Hz) was also measured at R0, R1, R2, and R3, and at 15 min of recovery, while force at high frequency (100 Hz) was measured only at R0 and R3 and in recovery. Voluntary exercise increased twitch +dF/dtmax at R0 following 5, 20, 40, and 60 min of exercise, from 2553 +/- 150 N/s at PRE to 39%, 41%, 42%, and 36% above PRE, respectively (P<0.005). Twitch +dF/dtmax decayed at brief rest (R3) following 20, 40, and 60 min of exercise (P<0.05). Pt at R0 following 5 and 20 min of exercise was above that at PRE (P<0.05), indicating that during the early phase of moderate-intensity repetitive exercise, potentiation occurs in the relative absence of LFF. At 40 and 60 min of exercise, Pt at R0 was unchanged from PRE. The LFF (10 Hz) induced by the protocol was evident at 40 and 60 min (R0-R3; P<0.05) and at 15 min following exercise (P<0.05). High-frequency force was not significantly compromised by the protocol. Since twitch force was maintained, these results suggest that as exercise progresses, LFF develops, which can be compensated for by potentiation.  相似文献   

8.
The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.  相似文献   

9.
The objective of this study was to investigate whether a warm-up consisting of a series of maximal contractions would augment the force and activation of subsequent leg extensor contractions. Both voluntary and evoked isometric contractions were tested to determine the mechanisms underlying the response. Nine subjects were tested for twitch, tetanic, submaximal (30%), and maximal voluntary contractile (MVC) properties before and after (1, 5, 10, and 15 minutes) one to three 10-second MVCs. MVC force either did not change following 1-2 MVCs or was depressed at 10 and 15 minutes after 3 MVCs. MVC activation was decreased (4.4-6.9%) throughout recovery, whereas submaximal contractions were minimally affected. Although overall, twitches were potentiated (15.5-19.8%) posttest, 3 MVCs had significantly greater twitch potentiation than 1 or 2 MVCs at 5 and 10 minutes. Results suggest that voluntary and evoked contractions respond differently to prior 10-second MVCs. In the present study, a warm-up routine of 1-3 MVCs of a 10-second duration did not enhance subsequent voluntary performance.  相似文献   

10.
The requirement for using an arterial occlusion cuff at the wrist when measuring forearm blood flows by plethysmography was tested on a total of 8 subjects at rest and during and after sustained and intermittent isometric exercise. The contribution of the venous effluent from the hand to the forearm flow during exercise was challenged by immersing the arm in water at 20, 34, and 40 degrees C. Occlusion of the circulation to the hand reduced the blood flow through the resting forearm at all water temperatures. There was an inverse relationship between the temperature of the water and the proportion in the reduction of forearm blood flow upon inflation of the wrist-cuff, ranging from 45 to 19% at 20 degrees to 40 degrees C, respectively. However, during sustained isometric exercise at 10% of the subjects maximum voluntary contraction (MVC) there was no reduction in the measured forearm flow when an arterial occlusion cuff was inflated aroung the wrist. Similarly, there was no alteration in the blood flow measured 2 s after each of a series of intermittent isometric contractions exerted at 20% or 60% MVC for 2 s whether or not circulation to the hand was occluded nor of the post-exercise hyperemia following 1 min of sustained contraction at 40% MVC. These results indicate that a wrist-cuff is not required for accurate measurement of forearm blood flows during or after isometric exercise.  相似文献   

11.
The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise. Accepted: 5 November 1997  相似文献   

12.
The 24 h recovery pattern of contractile properties of the triceps surae muscle, following a period of muscle fatigue, was compared in physically active young (25 years, n = 10) and elderly (66 years, n = 7) men. The fatigue test protocol consisted of 10 min of intermittent submaximal 20 Hz tetani. The maximal twitch (Pt) and tetanic force at 3 frequencies (10, 20 and 50 Hz) were determined at baseline and at 15 min, 1, 4 and 24 h after fatiguing the muscle. Maximal voluntary contraction (MVC) and vertical jump (MVJ) were also assessed. The loss of force during the fatigue test was not significantly different between the young (18 +/- 13%) and elderly (22 +/- 15%). Both groups showed similar and significant reductions of Pt (15%), tetanic force (10 to 35%) and rate of force development (dp/dt) (20%) 15 min and 1 h into recovery. The loss of force was greater at the lower stimulation frequencies of 10 and 20 Hz. Time-to-peak tension was unchanged from baseline during recovery in either group. The average rate of relaxation of twitch force (-dPt/dt) was decreased (p less than 0.05) and half-relaxation time significantly increased at 15 min and 1 h in the elderly but not the young. The findings indicate that after fatiguing contractions, elderly muscle demonstrates a slower return to resting levels of the rate and time course of twitch relaxation compared to the young.  相似文献   

13.
To determine the external force that induces maximal deoxygenation of brachioradialis muscle 32 trained male subjects maintained isometric contractions using the elbow flexor muscles up to the limit time (isotonic part of the isometric contraction, IIC) and beyond that time for 120 s (anisotonic part of the isometric contraction). During IIC each subject maintained relative forces of either 25% and 70% maximal voluntary contraction (MVC), 50% and 100% MVC, or 40% and 60% MVC. Muscle oxygenation was assessed using a near infrared spectroscope, and expressed as a percentage of the reference value (ΔO2rest) which was the difference between the minimal oxygenation obtained after 6 min of ischaemia at rest and the maximal reoxygenation following the release of the tourniquet. During IIC at 25% MVC, muscle oxygenation decreased to 17 (SEM 3)% ΔO2rest, then it levelled off [25 (SEM 1)% ΔO2rest]. After the point at which target force could not be maintained, reoxygenation was very weak. During IIC at 40%, 50%, 60%, and 70% MVC, the lowest muscle oxygenation values were obtained after 15–20 s of contraction and corresponded to −18 (SEM 6), −59 (SEM 12) −31 (SEM 6), and −29 (SEM 6)% ΔO2rest, respectively. For the contraction at 100% MVC, the lowest oxygenation [−19 (SEM 9)% ΔO2rest] was obtained while force was decreasing (69% MVC). During the anisotonic part of the isometric contractions, the greatest reoxygenation rate was obtained after 50% MVC IIC (P < 0.001). Our results showed that during isometric elbow flexions between 25% and 100% MVC, there was no linear relationship between external force and muscle oxygenation, and that the maximal deoxygenation of the brachioradialis muscle was obtained at 50% MVC. Accepted: 16 February 1998  相似文献   

14.
The effects of 21 days voluntary leg (plaster) immobilization on the mechanical properties of the triceps surae have been studied in 11 young female subjects, mean age 19.4 years. The results show that during the period of immobilization the mean time to peak tension (TPT) and half relaxation time (1/2RT) and tension (Pt) of the maximal twitch increased significantly (p less than 0.001) but the effects were short lived. Maximal tension and contraction times of the twitch recovered within 2-14 days following the removal of the plaster cast. The electrically evoked tetanic tensions at 10 Hz and 20 Hz did not change significantly (P greater than 0.1) during immobilization, but the 50 Hz tetanic tension (Po50) and maximal voluntary contraction (MVC) were reduced (p less than 0.05). The fall in Po50 and MVC was associated with 10% decrease in the estimated muscle (plus bone) cross-sectional area. The relative (%) change in Po50 and MVC following immobilization was related to the initial physiological status (as indicated by the response of the triceps surae to a standard fatigue test prior to immobilization) of the muscle. The rate of rise and recovery fall of the tetanus were slightly but significantly (p less than 0.01) reduced on day 7 of immobilization, but thereafter remained constant. The isokinetic properties of the triceps surae as reflected in the measured torque/velocity relation of the muscle in 4 subjects did not change significantly if account was taken of the slight degree of atrophy present following immobilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The superimposed twitch technique is frequently used to study the degree of motor unit activation during voluntary effort. This technique is one of the preferred methods to determine the activation deficit (AD) in normal, athletic, and patient populations. One of the limitations of the superimposed twitch technique is its variability under given contractile conditions. The objective of this research was to determine the source(s) of variability in the superimposed twitch force (STF) for repeat measurements. We hypothesized that the variability in the AD measurements may be caused by the timing of the twitch force relative to the onset of muscle activation, by force transients during the twitch application, by small variations in the actual force from the nominal target force, and by variations in the resting twitch force. Twenty-eight healthy subjects participated in this study. Sixteen of these subjects participated in a protocol involving contractions at 50% of their maximal voluntary contraction (MVC) effort, whereas the remaining 12 participated in a protocol involving contractions at 100% of their MVC. Doublet-twitch stimuli were superimposed onto the 50 and 100% effort knee extensor muscle contractions, and the resting twitch forces, voluntary knee extensor forces, and STFs were then measured. The mean resting twitch forces obtained before and after 8 s of 50% of MVC were the same. Similarly, the mean STFs determined at 1, 3, 5, and 7 s into the 50% MVC were the same. The variations in twitch force were significantly smaller after accounting for the actual force at twitch application than those calculated from the prescribed forces during the 50% MVC protocol (P < 0.05). Furthermore, the AD and the actual force showed statistically significant negative correlations for the 50% MVC tests. The interpolated twitch torque determined for the maximal effort contractions ranged from 1 to 70%. In contrast to the protocol at 50% of MVC, negative correlations were only observed in 5 of the 12 subjects during the 100% effort contractions. These results suggest that small variations in the actual force from the target force can account for the majority of the variations in the STFs for submaximal but not maximal effort contractions. For the maximal effort contractions, large variations in the STF exist due to undetermined causes.  相似文献   

16.
The effects are reported of prolonged exposure to simulated microgravity (strict bed rest in an antiorthostatic position -6 degrees head-down tilt, HDT) on voluntary and electrically evoked contractions of the triceps surae muscle in men (n = 6) and women (n = 4). The subjects served as their own controls. Bed rest is a model that has commonly been used to simulate spaceflight. Measurements made in the control condition (10-8 days before the beginning of HDT) and after 120-days of HDT (on the 3rd day after it ended) included examination of the properties of isometric maximal voluntary contractions (MVC), isometric twitch contractions (Pt) and tetanic contractions (Po). After HDT, the MVC decreased by means of 44% and 33%, P, by means of 36% and 11%, Po by means of 34% and 24%, in the men and the women, respectively. The difference between Po and MVC, expressed as a percentage of Po and referred to as force deficiency (FD), has also been calculated. The FD increased by means of 60% and 28.8% in the men and the women, respectively. Time-to-peak tension of the triceps surae muscle increased by means of 12% and 14% in the men and the women, respectively, but half-relaxation time decreased by means of 9% and 19%. Total contraction time increased by a mean of 23% in the men and decreased by a mean of 17% in the women. Force-velocity of properties of the triceps surae muscle calculated according to a relative scale of voluntary contraction development significantly decreased more in the women than the men. The calculations of the same properties of electrically evoked contraction development did not differ substantially from the initial physiological state. It can be concluded that not only were the contractile properties of the triceps surae muscle significantly different in the men and the women, but that the effects of exposure to simulated microgravity on these properties were also different. These differences may be explained by sex differences in the muscle tissue itself and in its maximal neural activation.  相似文献   

17.
During lengthening of an activated skeletal muscle, the force maintained following the stretch is greater than the isometric force at the same muscle length. This is termed residual force enhancement (RFE), but it is unknown how muscle damage following repeated eccentric contractions affects RFE. Using the dorsiflexors, we hypothesised muscle damage will impair the force generating sarcomeric structures leading to a reduction in RFE. Following reference maximal voluntary isometric contractions (MVC) in 8 young men (26.5±2.8y) a stretch was performed at 30°/s over a 30° ankle excursion ending at the same muscle length as the reference MVCs (30° plantar flexion). Surface electromyography (EMG) of the tibialis anterior and soleus muscles was recorded during all tasks. The damage protocol involved 4 sets of 25 isokinetic (30°/s) lengthening contractions. The same measures were collected at baseline and immediately post lengthening contractions, and for up to 10min recovery. Following the lengthening contraction task, there was a 30.3±6.4% decrease in eccentric torque (P<0.05) and 36.2±9.7% decrease in MVC (P<0.05) compared to baseline. Voluntary activation using twitch interpolation and RMS EMG amplitude of the tibialis anterior remained near maximal without increased coactivation for MVC. Contrary to our hypothesis, RFE increased (~100-250%) following muscle damage (P<0.05). It appears stretch provided a mechanical strategy for enhanced muscle function compared to isometric actions succeeding damage. Thus, active force of cross-bridges is decreased because of impaired excitation-contraction coupling but force generated during stretch remains intact because force contribution from stretched sarcomeric structures is less impaired.  相似文献   

18.
Repetitive activation of a skeletal muscle results in potentiation of the twitch contractile response. Incompletely fused tetanic contractions similar to those evoked by voluntary activation may also be potentiated by prior activity. We aimed to investigate the role of stimulation frequency on the enhancement of unfused isometric contractions in rat medial gastrocnemius muscles in situ. Muscles set at optimal length were stimulated via the sciatic nerve with 50-micros duration supramaximal pulses. Trials consisted of 8 s of repetitive trains [5 pulses (quintuplets) 2 times per second or 2 pulses (doublets) 5 times per second] at 20, 40, 50, 60, 70, and 80 Hz. These stimulation frequencies represent a range over which voluntary activation would be expected to occur. When the frequency of stimulation was 20, 50, or 70 Hz, the peak active force (highest tension during a contraction - rest tension) of doublet contractions increased from 2.2 +/- 0.2, 4.1 +/- 0.4, and 4.3 +/- 0.5 to 3.1 +/- 0.3, 5.6 +/- 0.4, and 6.1 +/- 0.7 N, respectively. Corresponding measurements for quintuplet contractions increased from 2.2 +/- 0.2, 6.1 +/- 0.5, and 8.7 +/- 0.7 to 3.2 +/- 0.3, 7.3 +/- 0.6, and 9.0 +/- 0.7 N, respectively. Initial peak active force values were 27 +/- 1 and 61.5 +/- 5% of the maximal (tetanic) force for doublet and quintuplet contractions, respectively, at 80 Hz. With doublets, peak active force increased at all stimulation frequencies. With quintuplets, peak active force increased significantly for frequencies up to 60 Hz. Twitch enhancement at the end of the 8 s of repetitive stimulation was the same regardless of the pattern of stimulation during the 8 s, and twitch peak active force returned to prestimulation values by 5 min. These experiments confirm that activity-dependent potentiation is evident during repeated, incompletely fused tetanic contractions over a broad range of frequencies. This observation suggests that, during voluntary motor unit recruitment, derecruitment or decreased firing frequency would be necessary to achieve a fixed (submaximal) target force during repeated isometric contractions over this time period.  相似文献   

19.
The primary purpose of this study was to determine the influence of load compliance on time to failure during sustained isometric contractions performed with the elbow flexor muscles at four submaximal target forces. Subjects pulled against a rigid restraint during the force task and maintained a constant elbow angle, while supporting an equivalent inertial load during the position task. Each task was sustained for as long as possible. Twenty-one healthy adults (23 ± 6 yr; 11 men) participated in the study. The maximal voluntary contraction (MVC) force was similar (P = 0.95) before the subjects performed the force and position tasks at each of the four target forces: 20, 30, 45, and 60% of MVC force. The time to task failure was longer for the force tasks (576 ± 80 and 325 ± 70 s) than for the position tasks (299 ± 77 and 168 ± 35 s) at target forces of 20 and 30% (P < 0.001), but was similar for the force tasks (178 ± 35 and 86 ± 14 s) and the position tasks (132 ± 29 and 87 ± 14 s) at target forces of 45 and 60% (P > 0.19). The briefer times to failure for the position task at the lower forces were accompanied by greater rates of increase in elbow flexor muscle activity, mean arterial pressure, heart rate, and rating of perceived exertion. There was no difference in the estimates of external mechanical work at any target force. The dominant mechanisms limiting time to failure of sustained isometric contractions with the elbow flexor muscles appear to change at target forces between 30 and 45% MVC, with load compliance being a significant factor at lower forces only.  相似文献   

20.
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号