首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Two polymorphisms were detected within exon I of the a-l-iduronidase (IDUA) gene both of which create restriction endonuclease sites and one of which changes an amino acid. The polymorphisms may be detected by digesting the same 245-bp polymerase chain reaction product. The polymorphisms can be used diagnostically in families with IDUA deficiency (mucopolysaccharidosis type I) and Huntington disease, which is closely linked to the IDUA locus.  相似文献   

2.
Summary Two polymorphisms exist in the -l-iduronidase (IDUA) gene, the gene that is defective in mucopolysaccharidosis type I (MPS I), viz. aKpnI polymorphism and a variable number of tandem repeats (VNTR) polymorphism with three common alleles. The analysis of allele and haplotype frequencies for these two polymorphisms in the normal population and in MPS I patients revealed the presence of linkage disequilibrium. The frequency of the 2,2 (VNTR,KpnI) allele in MPS I patients was 57% compared with only 37% in the normal population. The implications for the presence of a major MPS I allele and the ability to predict patient phenotype are discussed.  相似文献   

3.
BACKGROUND: Mucopolysaccharidosis I (MPS-I) is an autosomal recessive disorder, which is caused by mutations in the IDUA gene. It induces the deficiency of glycosidase alpha-L-duronidase. The enzyme that is required for the degradation of heparan and dermatan sulfate. This disorder expresses a wide range of clinical symptoms (severe mental retardation, skeletal deformations, hepatosplenomegaly, corneal clouding and mild visceral organ involvement). In the present paper, we report the frequencies of haplotypes of the Eco47III-NspI sites, in the IDUA gene, in Mexican healthy and in MPS-I individuals. METHODS: Eco47III and NspI intragenic polymorphisms in IDUA gene were studied in 262 (524 chromosomes) Mexican healthy subjects and in 53 (106 chromosomes) MPS-I patients. RESULTS: The genotypes for IDUA Eco47III and NspI sites in Mexicans were in agreement with Hardy-Weinberg expectations. Allele frequency distributions for individual sites differed (P < 0.05) in both groups. Haplotype Eco47III-NspI frequencies of Mexican MPS-I patients also differed from those of the normal Mexican population. The data provide evidence of linkage disequilibrium, since the MPS-I group constitutes a subset of the Mexican control population. The disequilibrium in Mexican MPS-I patients was defined by an increase in the haplotype A1B2, and deficiency in A2B1, with respect to normal population (P < 0.05). CONCLUSIONS: Our results support that these polymorphisms can be associated to mutations in IDUA gene, which leads to MPS-I in Mexican patients. On the other hand, these polymorphisms can be used to identify heterozygosity when they are informative.  相似文献   

4.
Background aimsMucopolysaccharidosis type I (MPS I) is characterized by deficiency of the enzyme alpha-l-iduronidase (IDUA) and storage of glycosaminoglycans (GAG) in several tissues. Current available treatments present limitations, thus the search for new therapies. Encapsulation of recombinant cells within polymeric structures combines gene and cell therapy and is a promising approach for treating MPS I.MethodsWe produced alginate microcapsules containing baby hamster kidney (BHK) cells overexpressing IDUA and implanted these capsules in the peritoneum of MPS I mice.ResultsAn increase in serum and tissue IDUA activity was observed at early time-points, as well as a reduction in GAG storage; however, correction in the long term was only partially achieved, with a drop in the IDUA activity being observed a few weeks after the implant. Analysis of the capsules obtained from the peritoneum revealed inflammation and a pericapsular fibrotic process, which could be responsible for the reduction in IDUA levels observed in the long term. In addition, treated mice developed antibodies against the enzyme.ConclusionsThe results suggest that the encapsulation process is effective in the short term but improvements must be achieved in order to reduce the immune response and reach a stable correction.  相似文献   

5.
As an initial step to develop plants as systems to produce enzymes for the treatment of lysosomal storage disorders, Arabidopsis thaliana wild-type (Col-0) plants were transformed with a construct to express human alpha-l-iduronidase (IDUA; EC 3.2.1.76) in seeds using the promoter and other regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene. IDUA protein was easily detected on Western blots of extracts from the T(2) seeds, and extracts contained IDUA activity as high as 2.9 nmol 4-methylumbelliferone (4 MU)/min/mg total soluble protein (TSP), corresponding to approximately 0.06 microg IDUA/mg TSP. The purified protein reacted with an antibody specific for xylose-containing plant complex glycans, indicating its transit through the Golgi complex. In an attempt to avoid maturation of the N-linked glycans of IDUA, the same IDUA transgene was introduced into the Arabidopsis cgl background, which is deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of complex glycan biosynthesis. IDUA activity and protein levels were significantly higher in transgenic cgl vs. wild-type seeds (e.g. maximum levels were 820 nmol 4 MU/min/mg TSP, or 18 microg IDUA/mg TSP). Affinity-purified IDUA derived from cgl mutant seeds showed a markedly reduced reaction with the antibody specific for plant complex glycans, despite transit of the protein to the apoplast. Furthermore, gel mobility changes indicated that a greater proportion of its N-linked glycans were susceptible to digestion by Streptomyces endoglycosidase H, as compared to IDUA derived from seeds of wild-type Arabidopsis plants. The combined results indicate that IDUA produced in cgl mutant seeds contains glycans primarily in the high-mannose form. This work clearly supports the viability of using plants for the production of human therapeutics with high-mannose glycans.  相似文献   

6.
Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of alfa-iduronidase (IDUA), which leads to intralysosomal accumulation of glycosaminoglycans. Some studies have revealed that oxidative stress plays an important role in MPS I. However, the mechanisms by which these alterations occur are still not fully understood. The aim of this study was to analyze genomic instability in blood cells from murine model of MPS I by single cell gel (comet) assay and micronucleus test. The results pointed out genetic damage in blood cells as depicted by the single cell gel (comet) assay results. By contrast, no increase of micronucleated cells were found in mouse blood cells when compared to negative control. Taken together, our results suggest that IDUA deficiency induces genomic damage in blood cells. Certainly, this finding offers new insights into the mechanisms underlying the relation between IDUA deficiency and clinical manifestations that can occur in MPS I patients.  相似文献   

7.
Mucopolysaccharidosis type I (MPS I) arises from a deficiency in the α-L-iduronidase (IDUA) enzyme. Although the clinical spectrum in MPS I patients is continuous, it was possible to recognize 3 phenotypes reflecting the severity of symptoms, viz., the Hurler, Scheie and Hurler/Scheie syndromes. In this study, 10 unrelated Chinese MPS I families (nine Hurler and one Hurler/Scheie) were investigated, and 16 mutant alleles were identified. Three novel mutations in IDUA genes, one missense p.R363H (c.1088G > A) and two splice-site mutations (c.1190-1G > A and c.792+1G > T), were found. Notably, 45% (nine out of 20) and 30% (six out of 20) of the mutant alleles in the 10 families studied were c.1190-1G > A and c.792+1G > T, respectively. The novel missense mutation p.R363H was transiently expressed in CHO cells, and showed retention of 2.3% IDUA activity. Neither p.W402X nor p.Q70X associated with the Hurler phenotype, or even p.R89Q associated with the Scheie phenotype, was found in this group. Finally, it was noted that the Chinese MPS I patients proved to be characterized with a unique set of IDUA gene mutations, not only entirely different from those encountered among Europeans and Americans, but also apparently not even the same as those found in other Asian countries.  相似文献   

8.
Mucopolysaccharidosis type I (MPS I) results from a deficiency in the enzyme alpha-L-iduronidase (IDUA), and is characterized by skeletal abnormalities, hepatosplenomegaly and neurological dysfunction. In this study, we used a late generation lentiviral vector to evaluate the utility of this vector system for the transfer and expression of the human IDUA cDNA in MPS I fibroblasts. We observed that the level of enzyme expression in transduced cells was 1.5-fold the level found in normal cells; the expression persisted for at least two months. In addition, transduced MPS I fibroblasts were capable of clearing intracellular radiolabeled glycosaminoglycan (GAG). Pulse-chase experiments on transduced fibroblasts showed that the recombinant enzyme was synthesized as a 76-kDa precursor form and processed to a 66-kDa mature form; it was released from transduced cells and was endocytosed into a second population of untreated MPS I fibroblasts via a mannose 6-phosphate receptor. These results suggest that the lentiviral vector may be used for the delivery and expression of the IDUA gene to cells in vivo for treatment of MPS I.  相似文献   

9.
The lysosomal hydrolase alpha-L-iduronidase (IDUA) is one of the enzymes in the metabolic pathway responsible for the degradation of the glycosaminoglycans heparan sulfate and dermatan sulfate. In humans a deficiency of IDUA leads to the accumulation of glycosaminoglycans, resulting in the lysosomal storage disorder mucopolysaccharidosis type I. A genomic subclone and a cDNA clone encoding human IDUA were used to localize IDUA to chromosome 4p16.3 by in situ hybridization and this was confirmed by Southern blot analysis. This localization is different from that of a previous report mapping IDUA to chromosome 22 and places the gene for IDUA in the same region of chromosome 4 as the Huntington disease gene. Measurement of expressed human IDUA activity in human-mouse hybrid cell lines confirmed that IDUA is on chromosome 4.  相似文献   

10.
Mucopolysaccharidosis Type I, Hurler's Syndrome, is a lysosomal storage disorder that affects the brain. The missing enzyme, alpha-L-iduronidase (IDUA), does not cross the blood-brain barrier (BBB). To enable BBB transport of the enzyme, human IDUA was fused to the carboxyl terminus of the heavy chain of a chimeric monoclonal antibody (MAb) to the human insulin receptor (HIR). The HIRMAb crosses the BBB on the endogenous insulin receptor, and acts as a molecular Trojan horse to ferry into brain the IDUA. Transfection of COS cells resulted in high levels of IDUA enzyme activity both in the medium and in the intracellular space. The size of the fusion heavy chain, as measured with Western blotting and antibodies to either human IDUA or human IgG, was increased about 80 kDa, relative to the size of the heavy chain of the parent HIRMAb. The IDUA enzyme specific activity of the affinity purified HIRMAb-IDUA fusion protein was 363 +/- 37 U/microg protein, which is comparable to specific activity of recombinant IDUA. The accumulation of glycosoaminoglycans in Hurler fibroblasts was decreased 70% by treatment with the HIRMAb-IDUA fusion protein. Confocal microscopy showed targeting of the fusion protein to the lysosome. The HIRMAb-IDUA fusion protein bound with high affinity to the HIR, and was rapidly transported into the brain of the adult Rhesus monkey following intravenous administration. The HIRMAb-IDUA fusion protein is a new treatment for Hurler's syndrome, which has been specifically engineered to cross the human BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号