首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A genetic linkage study was performed in a large Dutch kindred with erythrokeratodermia variabilis (EKV, McKusick no. 13320). The autosomal-dominant trait appeared to segregate rather consistently with the cde (r) gene complex of the Rh system. Only one recombinant was found amongst 27 informative individuals. Lod score calculations gave strong evidence for close linkage between the loci for EKV and Rh (with a maximum lod score of 5.55 at a recombination fraction of 0.044).  相似文献   

2.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder which is genetically linked to the short arm of chromosome 6, telomeric to the human major histocompatibility complex (HLA) and very close to D6S89. Previous multipoint linkage analysis using HLA, D6S89, and SCA1 suggested that SCA1 maps centromeric to D6S89. Data from this study using nine large kindreds indicate a maximum lod score between SCA1 and D6S89 of 67.58 at a maximum recombination fraction of .004. To localize SCA1 more precisely, we identified five dinucleotide polymorphisms near D6S89. Genotypic analyses at these polymorphic loci were carried out in nine multigeneration SCA1 kindreds and in the Centre d'Étude du Polymorphisme Humain reference families. A new marker, AM10GA, demonstrates no recombination with SCA1. The maximum lod score for AM10GA linkage to SCA1 is 42.14 at a recombination fraction of 0. Linkage analysis and analysis of recombination events confirm that SCA1 maps centromeric to D6S89 and establish the following order: CEN-D6S109–AM10GA/SCA1–D6S89–LR40–D6S202–TEL.  相似文献   

3.
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive primary disease of muscle which is usually inherited as an autosomal dominant disorder. FSHD has been localized to the long arm of chromosome 4, specifically to the 4q3.5-qter region. Initially published linkage studies showed no evidence for heterogeneity in FSHD. In the present study we have examined individuals in seven FSHD families. Two-point lod scores show significant evidence for linkage for D4S163 (lod score 3.04 at recombination fraction .21) and D4S139 (lod score 3.84 at recombination fraction .20). D4S171 also gave a positive score (lod score 2.56 at recombination fraction .24). Significant evidence for heterogeneity was found for each of the three markers. Multipoint linkage analysis in this region resulted in a peak multipoint lod score of 6.47. The multipoint analysis supported the two-point studies with odds of 20:1 showing linkage and heterogeneity over linkage and homogeneity. Five of the seven families gave a posterior probability of >95% of being of the linked type, while two families appeared unlinked to this region of 4q (P < .01%). Individuals in the two unlinked families met the clinical criteria for the diagnosis of FSHD, including facial weakness, clavicular flattening, scapula winging, proximal muscle weakness, and myopathic changes on muscle biopsies without inflammatory or mitochondrial pathology. This study demonstrates genetic heterogeneity in FSHD and has important implications for both genetic counseling and the elucidation of the etiology of FSHD.  相似文献   

4.
Summary Linkage data for familial incontinentia pigmenti (IP2) and nine X chromosomal markers are reported. Previously found linkage between IP2 and the DXS52 locus is confirmed with the maximum lod score of 6.19 at a recombination fraction of 0.03. Linkage is also established with loci DXS134, DXS15 and DXS33. Multipoint analysis allows us to localize the IP2 locus outside a block of seven linked markers of the Xq28 region.  相似文献   

5.
Summary The close linkage between the PstI-restriction fragment length polymorphism (RFLP) disclosed by the L2.7 genomic DNA probe and the Kidd blood group locus is described. The maximum lod score is+8.53 at recombination fraction . The upper probability limit of the recombination fraction is θ =1 0.11. The L2.7 probe, previously assigned provisionally to chromosome 17, is by the present study assigned to chromosome 18. This also assigns the Kidd blood group locus (JK) to chromosome 18. Accepting previous deletion mapping, the shortest regions of overlap (SRO) for JK is 18q11-12, whereas one of our hybrids assigns L2.7 to 18q11-pter, suggesting centromeric localisation of the linkage group. JK has been assigned previously to chromosome 2 because of its provisional linkage to IGK which in turn has been mapped to 2p12. Our own JK-IGK linkage data do in fact support the previous positive lod scores at high recombination fractions (total lods+4.12 at θ1 = 0.30). No obvious explanation for the conflicting gene mapping data is found.  相似文献   

6.
Previous studies have presented evidence suggesting that levels of dopamine-beta-hydroxylase (DBH) activity are controlled by a gene linked to the ABO blood group locus. In this study, linkage analyses in four large families of whites and one family of blacks were performed on the untransformed and on the square root--and natural log--transformed DBH activity. In the families of white individuals, the results of both the sib-pair and lod-score linkage analyses strongly indicate that a gene regulating DBH activity is linked to the ABO blood group locus on chromosome 9q (i.e., lod score 5.88 at a recombination fraction of .0). However, the transformation used has a large effect on the maximum lod score and estimated recombination fraction. This putative gene does not appear to be polymorphic in the family of blacks.  相似文献   

7.
Summary We have studied genetic linkage between the gene for creatine kinase muscle type (CKMM) and the gene for myotonic dystrophy (DM). In a panel of 65 myotonic dystrophy families from Canada and the Netherlands, a maximum lod score (Zmax) of 22.8 at a recombination frequency (Θ) of 0.03 was obtained. Tight linkage was also demonstrated for CKMM and the gene for apolipoprotein C2 (ApoC2). This establishes CKMM as a useful marker for myotonic dystrophy.  相似文献   

8.
We have used three different methods to map the human liver/bone/kidney alkaline phosphatase (ALPL) locus: (1) Southern blot analysis of DNA derived from a panel of human-rodent somatic cell hybrids; (2) in situ hybridization to human chromosomes; and (3) genetic linkage analysis. Our results indicate that the ALPL locus maps to human chromosome bands 1p36.1-p34 and is genetically linked to the Rh (maximum lod score of 15.66 at a recombination value of 0.10) and fucosidase A (maximum lod score of 8.24 at a recombination value of 0.02) loci. These results, combined with restriction fragment length polymorphisms identified by ALPL DNA probes, provide a useful marker for gene mapping studies involving the short arm of chromosome 1. In addition, our results help to elucidate further the structure and evolution of the human alkaline phosphatase multigene enzyme family.  相似文献   

9.
Previous investigators have reported loose linkage in both sexes for phosphoglycolate phosphatase (PGP) and haptoglobin alpha (HPA). We present results of linkage studies between PGP and HPA in two data sets, one from Houston and the other an update of an earlier report from Los Angeles. Using quadratic interpolation to estimate the male (theta m) and female (theta f) recombination values from bivariate lod tables, we found for the Houston data that theta m = 0.43 and theta f = 0.03 at the maximum lod score of z = 2.23. For the Los Angeles series, we found that theta m = 0.31, theta f = 0.48, and z = 0.27. We invoke heterogeneity in the recombination value in different families as an explanation of our findings. We also recommend that bivariate lod tables should always be generated, even though not reported. This is because the usual assumption of theta m = theta f (and, rarely, theta f = 1.8 theta f) under which lod scores are computed may be invalid in many cases.  相似文献   

10.
X-linked cardioskeletal myopathy with neutropenia and abnormal mitochondria is clinically characterized by congenital dilated cardiomyopathy, skeletal myopathy, recurrent bacterial infections, and growth retardation. We analyzed linkage between the disease locus and X-chromosomal markers in a family with seven carriers, four patients, and eight unaffected sons of carriers. Highest lod scores obtained by two-point linkage analysis were 2.70 for St14.1 (DXS52, TaqI) at a recombination fraction of zero and 2.53 for cpX67 (DXS134) at a recombination fraction of zero. Multipoint linkage analysis resulted in a maximum lod score of 5.24 at the position of St35.691 (DXS305). The most distal recombination detected in this family was located between the markers II-10 (DXS466) and DX13 (DXS15). These data indicate the location of the mutated gene at Xq28.  相似文献   

11.
Summary We investigated possible association of and linkage between HLA and familial polyposis coli (FPC). In 182 individuals from 66 pedigrees of FPC and 108 individuals from a normal population, HLA-A,-B, and-C antigens were determined. When the frequencies of HLA antigens in 66 unrelated patients and in normal controls were compared, no association of FPC with HLA was observed. For the linkage analysis, HLA haplotypes of 17 affected sib pairs were investigated by the affected sib pair method. The number of pairs which shared two, one, and no haplotypes identical by descent was not significantly different from the number expected with random occurrence (P>0.95). Finally, seven families were analyzed using Morton's sequential test. A maximum lod score of-0.056 at a recombination fraction of 0.4, and a lod of-3.089 at a recombination fraction of 0.05 were obtained. Therefore, there is neither an association of nor linkage between FPC and HLA.  相似文献   

12.
The human methylmalonyl CoA mutase (MCM) cDNA has been used to localize the MUT locus on the short arm of chromosome 6 proximal to the glyoxalase locus in 6p deletion cell lines. A HindIII polymorphism identified by the MCM cDNA was used to study linkage relationships of MUT to HLA (A-B-DQ-DR) and D6S4 in the reference CEPH families. The maximum lod score for MUT versus HLA was 3.04 at a recombination fraction of 0.28. The maximum lod score for MUT versus D6S4 was 22.93 at a recombination fraction of 0.01. These data suggest that MUT and D6S4 loci are tightly linked and may be used as one locus in a haplotype form for linkage studies on proximal 6p and diagnostic analysis of pedigrees with mut methylmalonic acidemia.  相似文献   

13.
We have cloned a cDNA probe for human apolipoprotein AII and used it to analyze linkage relationships on chromosome 1. We found no recombinations between APOA2 and the gene coding for the Duffy blood group antigens (FY) in the 19 meioses examined. Our maximal lod score is 4.2 at zero recombination rate. K. Berg (1987, Cytogenet. Cell Genet. 46:579) found a maximal score of 2.5 at recombination fraction 0.14 in 54 meioses. When results from both studies are combined, the most likely distance between FY and APOA2 is about 10% recombination with a combined lod score of 5.6 for both sexes.  相似文献   

14.
Autosomal dominant familial exudative vitreoretinopathy (adFEVR) is a hereditary disorder characterized by the incomplete vascularization of the peripheral retina. The primary biochemical defect in adFEVR is unknown. The adFEVR locus has tentatively been assigned to 11q by linkage studies. We report the results of an extended multipoint linkage analysis of two families with adFEVR by using five markers (INT2, D11S533, D11S527, D11S35, and CD3D) from 11q13-q23. Pairwise linkage data obtained in the two families were rather similar and hence have not provided evidence for genetic heterogeneity. The highest complied two-point lod score (3.67, at a recombination fraction of .07) was obtained for the disease locus versus D11S533. Multipoint analyses showed that the adFEVR locus maps most likely, with a maximum location score of over 20, between D11S533/D11S527 and D11S35, at recombination rates of .147 and .104, respectively. Close linkage without recombination (maximum lod score 11.26) has been found between D11S533 and D11S527.  相似文献   

15.
Linkage studies of three-point crosses (triple backcross matings) showed that the linear sequence of three of the pig's immunogenetic traits — the SLA major histocompatibility complex and the J and C blood group loci — is SLA-J-C . Andresen & Baker (1964) and Rasmusen (1965) described close linkage between the J and C blood group loci and respectively found their recombination frequency to be 5.29 ± 1.1 % and 7.00 ± 3.4 %; by combining the data the exact frequency was determined at 5.75 ± 0.79 % (Muir & Rasmusen, 1974). Later, linkage of the SLA major histocompatibility complex with both J (Hruban et al., 1976) and C (Hruban et al., 1977) erythrocytic loci was found. The maximum tabular lod score values were found in the recombination fraction Θ= 0.10 in comparison of SLA and J and in the fraction Θ= 0.20 in comparison of SLA and C (Hruban et al., 1977).  相似文献   

16.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromosome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction θ of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

17.
Huntington disease: no evidence for locus heterogeneity   总被引:11,自引:0,他引:11  
A total of 63 families with Huntington disease (HD) were examined for linkage between HD and G8 (D4S10). The families included 57 Caucasian, four Black American, and two Japanese. The combined maximum lod score was 87.69 at theta = 0.04 (99% confidence interval 0.018-0.071). The maximum frequency of recombination was 0.03 in males and 0.05 in females. Fifty-seven families gave positive lod scores; five small families gave mildly negative lod scores. The maximum likelihood estimate of alpha, the proportion of linked loci, was 1.0 with a lower 99% confidence interval of 0.88. These data suggest that there is only one HD locus, although a second rare locus cannot be ruled out.  相似文献   

18.
In human genetics, two loci are declared to be linked when the lod score at the maximum likelihood recombination fraction theta exceeds the threshold of 3.0. Since recombination rates differ between the sexes, one can alternatively detect linkage by estimating separate recombination rates, theta m and theta f, for male and female meiosis and examining the corresponding sex-specific lod scores. The question arises: In order to maintain the same chance of falsely declaring linkage, what is the correct threshold for declaring linkage when sex-specific lod scores are used? We show here that the appropriate threshold is about 3.5. If the restriction that theta f greater than theta m is added, the appropriate threshold falls to about 3.25. We also discuss the relative efficiency of detecting linkage by using sex-specific and sex-averaged lod scores.  相似文献   

19.
We have performed linkage analysis in a large French-Acadian kindred segregating one form of autosomal dominant Charcot-Marie-Tooth disease (CMTD) (type IA) using 17 polymorphic DNA markers spanning human chromosome 17 and demonstrate linkage to several markers in the pericentromeric region, including DNA probes pA10-41, EW301, S12-30, pTH17.19, c11-2B, and p11-2c11.5. Linkage of markers pA10-41 and EW301 to CMTD type IA has been reported elsewhere. Four new markers, 1516, 1517, 1541, and LL101, which map to chromosome 17 have been identified. The marker 1516 appears to be closely linked to the CMTD locus on chromosome 17 as demonstrated by a maximum lod score of 3.42 at theta (recombination fraction) = 0. This marker has been mapped to 17p11.2 using a somatic cell hybrid constructed from a patient with Smith-Magenis syndrome [46,XY, del(17)(p11.2p11.2)]. A lod score of 6.16 has been obtained by multipoint linkage analysis with 1516 and two markers from 17q11.2, pTH17.19, and c11-2B. The markers 1517 and 1541 have been mapped to 17p12-17q11.2 and demonstrate maximum lod scores of 2.35 and 0.63 at recombination values of .1 and .2, respectively. The marker LL101 has been mapped to 17p13.105-17p13.100 and demonstrates a maximum lod score of 1.56 at a recombination value of .1. Our study confirms the localization of CMTD type IA to the pericentromeric region of chromosome 17.  相似文献   

20.
We recently reported a new X-linked mental retardation (XLMR) disorder in a four-generation family of Dutch descent. Features included Dandy-Walker malformation, basal ganglia disease, and seizures. Twenty-six family members, including two living affected males and two obligate carriers, were available for study. No evidence of linkage was observed between the disease locus and RFLPs from several X-chromosome regions, including Xp21-p22 (13 markers), proximal Xq (four markers), and Xq28 (three markers). However, a new hypervariable short tandem repeat (STR) within the HPRT gene at Xq26 showed positive linkage to the disease locus, with a maximum lod score of 2.19 at a recombination fraction of 0. A second hypervariable marker in Xq26, the dinucleotide repeat XL90A3 (DXS425), showed a lod score of .84 at a recombination fraction of .11. Both the HPRT and DXS425 markers were typed in 40 CEPH families, and subsequent multipoint linkage analysis showed the following order: Xcen-DXS425-(HPRT,XLMR)-F9-qter. HPRT and these flanking markers are therefore useful for carrier detection and prenatal diagnosis in this family. This study illustrates that hypervariable STRs will be powerful tools for linkage analysis and genetic diagnosis, particularly when relatively small families are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号