共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Factor XII deficiency has been postulated to be a risk factor for thrombosis suggesting that factor XII is an antithrombotic protein. The biochemical mechanism leading to this clinical observation is unknown. We have previously reported high molecular weight kininogen (HK) inhibition of thrombin-induced platelet aggregation by binding to the platelet glycoprotein (GP) Ib-IX-V complex. Although factor XII will bind to the intact platelet through GP Ibalpha (glycocalicin) without activation, we now report that factor XIIa (0. 37 microm), but not factor XII zymogen, is required for the inhibition of thrombin-induced platelet aggregation. Factor XIIa had no significant effect on SFLLRN-induced platelet aggregation. Moreover, an antibody to the thrombin site on protease-activated receptor-1 failed to block factor XII binding to platelets. Inhibition of thrombin-induced platelet aggregation was demonstrated with factor XIIa but not with factor XII zymogen or factor XIIf, indicating that the conformational exposure of the heavy chain following proteolytic activation is required for inhibition. However, inactivation of the catalytic activity of factor XIIa did not affect the inhibition of thrombin-induced platelet aggregation. Factor XII showed displacement of biotin-labeled HK (30 nm) binding to gel-filtered platelets and, at concentrations of 50 nm, was able to block 50% of the HK binding, suggesting involvement of the GP Ib complex. Antibodies to GP Ib and GP IX, which inhibited HK binding to platelets, did not block factor XII binding. However, using a biosensor, which monitors protein-protein interactions, both HK and factor XII bind to GP Ibalpha. Factor XII may serve to regulate thrombin binding to the GP Ib receptor by co-localizing with HK, to control the extent of platelet aggregation in vivo. 相似文献
3.
Baglia FA Shrimpton CN López JA Walsh PN 《The Journal of biological chemistry》2003,278(24):21744-21750
Factor XI binds to activated platelets where it is efficiently activated by thrombin. The factor XI receptor is the platelet membrane glycoprotein (GP) Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), a significant fraction of which exists within lipid rafts on stimulated platelets (Shrimpton, C. N., Borthakur, G., Larrucea, S., Cruz, M. A., Dong, J. F., and Lopez, J. A. (2002) J. Exp. Med. 196, 1057-1066). Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids implicated in localizing membrane ligands and in cellular signaling. We now show that factor XI was localized to lipid rafts in activated platelets ( approximately 8% of total bound) but not in resting platelets. Optimal binding of factor XI to membrane rafts required prothrombin (and Ca2+) or high molecular weight kininogen (and Zn2+), which are required for factor XI binding to platelets. An antibody to GPIb (SZ-2) that disrupts factor XI binding to the GPIb-IX-V complex also disrupted factor XI-raft association. The isolated recombinant Apple 3 domain of factor XI, which mediates factor XI binding to platelets, also completely displaces factor XI from membrane rafts. To investigate the physiological relevance of the factor XI-raft association, the structural integrity of lipid rafts was disrupted by cholesterol depletion utilizing methyl-beta-cyclodextrin. Cholesterol depletion completely prevented FXI binding to lipid rafts, and initial rates of factor XI activation by thrombin on activated platelets were inhibited >85%. We conclude that factor XI is localized to GPIb in membrane rafts and that this association is important for promoting the activation of factor XI by thrombin on the platelet surface. 相似文献
4.
5.
6.
7.
Yun TH Baglia FA Myles T Navaneetham D López JA Walsh PN Leung LL 《The Journal of biological chemistry》2003,278(48):48112-48119
Activation of factor XI (FXI) by thrombin on stimulated platelets plays a physiological role in hemostasis, providing additional thrombin generation required in cases of severe hemostatic challenge. Using a collection of 53 thrombin mutants, we identified 16 mutants with <50% of the wild-type thrombin FXI-activating activity in the presence of dextran sulfate. These mutants mapped to anion-binding exosite (ABE) I, ABE-II, the Na+-binding site, and the 50-insertion loop. Only the ABE-II mutants showed reduced binding to dextran sulfate-linked agarose. Selected thrombin mutants in ABE-I (R68A, R70A, and R73A), ABE-II (R98A, R245A, and K248A), the 50-insertion loop (W50A), and the Na+-binding site (E229A and R233A) with <10% of the wild-type activity also showed a markedly reduced ability to activate FXI in the presence of stimulated platelets. The ABE-I, 50-insertion loop, and Na+-binding site mutants had impaired binding to FXI, but normal binding to glycocalicin, the soluble form of glycoprotein Ibalpha (GPIb alpha). In contrast, the ABE-II mutants were defective in binding to glycocalicin, but displayed normal binding to FXI. Our data support a quaternary complex model of thrombin activation of FXI on stimulated platelets. Thrombin bound to one GPIb alpha molecule, via ABE-II on its posterior surface, is properly oriented for its activation of FXI bound to a neighboring GPI alpha molecule, via ABE-I on its anterior surface. GPIb alpha plays a critical role in the co-localization of thrombin and FXI and the resultant efficient activation of FXI. 相似文献
8.
Lova P Campus F Lombardi R Cattaneo M Sinigaglia F Balduini C Torti M 《The Journal of biological chemistry》2004,279(24):25299-25306
Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V. 相似文献
9.
Wu W Sinha D Shikov S Yip CK Walz T Billings PC Lear JD Walsh PN 《The Journal of biological chemistry》2008,283(27):18655-18664
Coagulation factor XI (FXI) is a covalent homodimer consisting of two identical subunits of 80 kDa linked by a disulfide bond formed by Cys-321 within the Apple 4 domain of each subunit. Because FXI(C321S) is a noncovalent dimer, residues within the interface between the two subunits must mediate its homodimeric structure. The crystal structure of FXI demonstrates formation of salt bridges between Lys-331 of one subunit and Glu-287 of the other subunit and hydrophobic interactions at the interface of the Apple 4 domains involving Ile-290, Leu-284, and Tyr-329. FXI(C321S), FXI(C321S,K331A), FXI(C321S,E287A), FXI(C321S,I290A), FXI(C321S,Y329A), FXI(C321S,L284A), FXI(C321S,K331R), and FXI(C321S,H343A) were expressed in HEK293 cells and characterized using size exclusion chromatography, analytical ultracentrifugation, electron microscopy, and functional assays. Whereas FXI(C321S) and FXI(C321S,H343A) existed in monomer/dimer equilibrium (K(d) approximately 40 nm), all other mutants were predominantly monomers with impaired dimer formation by analytical ultracentrifugation (K(d)=3-38 microm). When converted to the active enzyme, FXIa, all the monomeric mutants activated FIX similarly to wild-type dimeric FXIa. In contrast, these monomeric mutants could not be activated efficiently by FXIIa, thrombin, or autoactivation in the presence of dextran sulfate. We conclude that salt bridges formed between Lys-331 of one subunit and Glu-287 of the other together with hydrophobic interactions at the interface, involving residues Ile-290, Leu-284, and Tyr-329, are essential for homodimer formation. The dimeric structure of FXI is essential for normal proteolytic activation of FXI by FXIIa, thrombin, or FXIa either in solution or on an anionic surface but not for FIX activation by FXIa in solution. 相似文献
10.
Structural and functional mapping of the thrombin domain involved in the binding to the platelet glycoprotein Ib. 总被引:5,自引:0,他引:5
The activation of human platelets by alpha-thrombin is mediated in part by cleavage of the protease-activated receptor (PAR) 1 and 4 and by the glycoprotein (Ib)alpha, (Gp(Ib)alpha), which binds with high affinity to alpha-thrombin. Recent studies have shown that the thrombin domain referred to as heparin binding site (HBS) is involved in the interaction with the platelet Gp(Ib)alpha. The HBS is rich in basic amino acids. To identify the key amino acid residues involved in the binding to Gp(Ib)alpha, we have performed alanine scanning mutagenesis of the basic HBS R93, R97, R101, R233, K236, K240, R233/K236/Q239, as well as of the neutral Q239 residues, located in different regions of the domain. For comparison, mutation at R67 within the fibrinogen recognition site (FRS) of thrombin was performed as well. Solid-phase binding experiments showed that the Kd of thrombin-GpIb interaction was reduced 22-fold for R93A, 8-fold for R97A, 13-fold for R101A, 29-fold for R233A, 21-fold for K236A, 5-fold for K240A, and 31-fold for the triple mutant R233A/K236A/Q239A, while the Q239A and R67A forms did not show any significant affinity change. The platelet activating capacity of these mutants was evaluated as well. Using gel-filtered platelets, the EC50 value of thrombin-induced aggregation was from 5- to 13-fold higher in the HBS mutants than in the WT form, and was linearly and positively correlated with the corresponding Kd values pertaining to thrombin binding to GpIb. Measurements of PAR-1 hydrolysis on the platelet membrane showed that the HBS mutants R233A, R101A, R93A, K236A, and R233/K236/Q239 forms had a reduction of the apparent kcat/Km value. These results are a consequence of a defective binding to GpIb, which is known to optimize the interaction with PAR-1 in situ. A confirm of this hypothesis came from the demonstration that the kcat/Km value pertaining to the hydrolysis by the HBS-mutated thrombins of the synthetic PAR-1 38-60 peptide in solution was similar to that one obtained with the WT form. In conclusion, these experiments provide a structural and functional mapping of the thrombin HBS subregions involved in the binding to the platelet Gp(Ib)alpha and in the cell activation. 相似文献
11.
Baglia FA Shrimpton CN Emsley J Kitagawa K Ruggeri ZM López JA Walsh PN 《The Journal of biological chemistry》2004,279(47):49323-49329
Factor XI (FXI) binds specifically and reversibly to high affinity sites on the surface of stimulated platelets (Kd app of approximately 10 nm; Bmax of approximately 1,500 sites/platelet) utilizing residues exposed on the Apple 3 domain in the presence of high molecular weight kininogen and Zn2+ or prothrombin and Ca2+. Because the FXI receptor in the platelet membrane is contained within the glycoprotein Ibalpha subunit of the glycoprotein Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), we utilized mocarhagin, a cobra venom metalloproteinase, to generate a fragment (His1-Glu282) of glycoprotein Ibalpha that contains the leucine-rich repeats of the NH2-terminal globular domain and excludes the macroglycopeptide portion of glycocalicin, the soluble extracytoplasmic portion of glycoprotein Ibalpha. This fragment was able to compete with FXI for binding to activated platelets (Ki of 3.125 +/- 0.25 nm) with a potency similar to that of intact glycocalicin (Ki of 3.72 +/- 0.30 nm). However, a synthetic glycoprotein Ibalpha peptide, Asp269-Asp287, containing a thrombin binding site had no effect on the binding of FXI to activated platelets. Moreover, the binding of 125I-labeled thrombin to glycocalicin was unaffected by the presence of FXI at concentrations up to 10(-5) m. The von Willebrand factor A1 domain, which binds the leucine-rich repeats, inhibited the binding of FXI to activated platelets. Thus, we examined the effect of synthetic peptides of each of the seven leucine-rich repeats on the binding of 125I-FXI to activated platelets. All leucine-rich repeat (LRR) peptides derived from glycoprotein Ibalpha were able to inhibit FXI binding to activated platelets in the following order of decreasing potency: LRR7, LRR1, LRR4, LRR5, LRR6, LRR3, and LRR2. However, the leucine-rich repeat synthetic peptides derived from glycoprotein Ibbeta and Toll protein had no effect. We conclude that FXI binds to glycoprotein Ibalpha at sites comprising the leucine-rich repeat sequences within the NH2-terminal globular domain that are separate and distinct from the thrombin-binding site. 相似文献
12.
By deletion mutagenesis and transient expression in COS cells, a 96-amino acid hydrophilic sequence in the glycoprotein Ib alpha polypeptide located between L220 and L318 was identified which appeared to contain its von Willebrand factor- (vWF) binding site. The cDNA encoding this fragment was then expressed in Escherichia coli and purified from the bacterial cell lysate. The recombinant polypeptide, rGpIb alpha Q221-L318, was monomeric and had an apparent molecular weight of 14,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It inhibited both ristocetin-induced binding of 125I-vWF to fixed washed platelets and ristocetin-induced platelet agglutination. The recombinant polypeptide also inhibited the binding of 125I-vWF to immobilized type I and III collagen. Inhibition of 125I-vWF binding to platelets and collagen was dose-dependent, with IC50 values of 500 and 200 nM rGpIb alpha Q221-L318, respectively. Fifty % inhibition of ristocetin-induced platelet agglutination required 500 nM rGpIb alpha Q221-L318. Although rGpIb alpha Q221-L318 inhibited vWF binding to collagen it did not, itself, bind to collagen-coated surfaces. Reduction of the disulfide bond between C248 and C264 abolished activity. 125I-rGpIb alpha Q221-L318 bound directly to GpIb/IX sites on multimeric vWF. These studies document that a portion of the sequence between Q221 and L318 is needed for recognition and binding to vWF and that binding requires an intact disulfide bond between C248 and C264. The binding of this recombinant polypeptide to vWF multimers inhibits vWF interaction with two important substrates, platelet GpIb/IX and collagen. 相似文献
13.
Ristocetin-dependent reconstitution of binding of von Willebrand factor to purified human platelet membrane glycoprotein Ib-IX complex 总被引:15,自引:0,他引:15
Whether the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor for ristocetin-dependent binding of von Willebrand factor (vWF) has been examined by reconstitution with the purified components using a solid-phase bead assay. Purified GP Ib-IX complex was bound and orientated on the beads via a monoclonal antibody, FMC 25, directed against the membrane-associated region of the complex. Specific binding of 125I-labeled vWF to the GP Ib-IX complex coated beads was strictly ristocetin dependent with maximal binding occurring at ristocetin concentrations greater than or equal to 1 mg/mL. Ristocetin-dependent specific binding of 125I-labeled vWF was saturable. The observed binding was specific to the interaction between vWF and the GP Ib-IX complex since there was no ristocetin-dependent specific binding of vWF if the physicochemically related platelet membrane glycoprotein, GP IIb, was substituted for the GP Ib-IX complex in a corresponding bead assay. Further, neither bovine serum albumin nor other adhesive glycoproteins, such as fibrinogen or fibronectin, specifically bound to the GP Ib-IX complex in the presence of ristocetin. Ristocetin-dependent binding of vWF to platelets and to GP Ib-IX complex coated beads was inhibited by monoclonal antibodies against a 45,000 molecular weight N-terminal region of GP Ib but not by monoclonal antibodies directed against other regions of the GP Ib-IX complex. Similar correspondence between platelets and purified GP Ib-IX complex with respect to the ristocetin-dependent binding of vWF was obtained with anti-vWF monoclonal antibodies.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Human blood coagulation factor XI was activated by either autoactivation or thrombin. These reactions occurred only in the presence of negatively charged materials, such as dextran sulfate (approximately Mr 500,000), sulfatide, and heparin. During the activation, factor XI was cleaved at a single Arg-Ile bond by thrombin or factor XIa to produce an amino-terminal 50-kDa heavy chain and a carboxyl-terminal 35-kDa light chain. This activation pattern is identical to that produced by factor XIIa. The addition of a small amount of thrombin and sulfatide to factor XII-deficient plasma produced shorter clotting times than when these agents were added to factor XI/factor XII combined-deficient plasma. These results suggest that the activation of factor XI by thrombin and possibly the autoactivation of factor XI proceed in plasma to lead fibrin clot formation. These reactions may have a role on an appropriate negatively charged surface in normal hemostasis. 相似文献
15.
Paolo Lova Ilaria Canobbio Gianni F. Guidetti Cesare Balduini Mauro Torti 《Cellular signalling》2010,22(11):1681-1687
Three different surface receptors mediate thrombin-induced activation and aggregation of human blood platelets: the protease activated receptors 1 and 4 (PAR1 and PAR4), and the glycoprotein (GP) Ibα of the GPIb-IX-V complex. However, their relative contribution in the stimulation of specific intracellular signaling pathways by thrombin remains largely controversial. In this work, we have shown that activation of PAR1 and PAR4 by thrombin or by selective activating peptides stimulated phospholipase C, tyrosine kinases, as well as the small GTPase Rap1b, promoted actin polymerization and cytoskeleton reorganization. When platelets were desensitized for both PAR1 and PAR4, high doses of thrombin, were unable to activate Rap1b, but produced a still evident stimulation of phospholipase C, as documented by the measurement of intracellular Ca2+ mobilization and protein kinase C activation. These events were abrogated upon proteolysis of GPIbα by the metalloproteinase mocarhagin. In PAR1- and PAR4-desensitized platelets, thrombin also induced tyrosine phosphorylation of some substrates, but, surprisingly, this event was largely independent of GPIbα binding, as it persisted upon platelet treatment with mocarhagin. Similarly, thrombin-induced actin polymerization and cytoskeleton reorganization were only minimally altered upon PAR1 and PAR4 inactivation and GPIbα proteolysis. Interestingly, none of these events were elicited by enzymatically inactive thrombin. Finally we found that GPIbα cleavage reduced, but did not abrogate, platelet aggregation in PAR1- and PAR4-desensitized platelets. These results identify a novel pathway for platelet activation operated by thrombin independently of PAR1, PAR4 and GPIbα. 相似文献
16.
17.
Ulrichts H Udvardy M Lenting PJ Pareyn I Vandeputte N Vanhoorelbeke K Deckmyn H 《The Journal of biological chemistry》2006,281(8):4699-4707
Soluble von Willebrand factor (VWF) has a low affinity for platelet glycoprotein (GP) Ibalpha and needs immobilization and/or high shear stress to enable binding of its A1 domain to the receptor. The previously described anti-VWF monoclonal antibody 1C1E7 enhances VWF/GPIbalpha binding and recognizes an epitope in the amino acids 764-1035 region in the N-terminal D'D3 domains. In this study we demonstrated that the D'D3 region negatively modulates the VWF/GPIb-IX-V interaction; (i) deletion of the D'D3 region in VWF augmented binding to GPIbalpha, suggesting an inhibitory role for this region, (ii) the isolated D'D3 region inhibited the GPIbalpha interaction of a VWF deletion mutant lacking this region, indicating that intramolecular interactions limit the accessibility of the A1 domain, (iii) using a panel of anti-VWF monoclonal antibodies, we next showed that the D'D3 region is in close proximity with the A1 domain in soluble VWF but not when VWF was immobilized; (iv) destroying the epitope of 1C1E7 resulted in a mutant VWF with an increased affinity for GPIbalpha. Our results support a model of domain translocation in VWF that allows interaction with GPIbalpha. The suggested shielding interaction of the A1 domain by the D'D3 region then becomes disrupted by VWF immobilization. 相似文献
18.
19.
To study the pathways for initiation of intrinsic blood coagulation, activated human platelets were compared with dextran sulfate as surfaces for factor XI activation by factor XIIa, factor XIa, or thrombin. Activated gel-filtered platelets promoted the activation of factor XI (60 nm) by thrombin (0.02-10 nm, EC(50) approximately 100 pm, threshold concentration approximately 10 pm) at initial rates 2- to 3-fold greater than those obtained with dextran sulfate in the presence of either high molecular weight kininogen (45 nm) and ZnCl(2) (25 micrometer) or prothrombin (1.2 micrometer) and CaCl(2) (2 mm). The maximum rates of factor XI activation achieved in the presence of activated gel-filtered platelets were 30 nm.min(-1) with thrombin, 6 nm.min(-1) with factor XIIa and 2 nm.min(-1) with factor XIa. Values of turnover number calculated at various enzyme concentrations (0.05-1 nm) were 24-167 (mean = 86) min(-1) for thrombin, 4.6-50 (mean = 21) min(-1) for factor XIIa, and 1.3-14 (mean = 8) min(-1) for factor XIa. A physiological concentration of fibrinogen (9.0 micrometer) inhibited factor XI activation by thrombin (but not by factor XIIa) in the presence of dextran sulfate but not in the presence of gel-filtered platelets. Compared with factors XIIa and XIa, thrombin is the preferred factor XI activator, and activated platelets are a relevant physiological surface for thrombin-mediated initiation of intrinsic coagulation in vivo. 相似文献
20.
Heparin promotes the binding of thrombin to fibrin polymer. Quantitative characterization of a thrombin-fibrin polymer-heparin ternary complex 总被引:1,自引:0,他引:1
The binding of human alpha-thrombin (IIa) to fibrin polymer (FnIIp) was studied in the presence and absence of a high affinity 20,300 Mr heparin (H) at pH 7.4, I 0.15, and 23 degrees C. In the absence of heparin, thrombin interacts with a high affinity class of binding sites on fibrin polymer with a dissociation constant of 301 +/- 36 nM in a manner which is independent of the enzyme active site. Studies of thrombin binding as a function of heparin and fibrin polymer concentrations imply that a ternary thrombin-fibrin polymer-heparin complex (IIa.FnIIp.H) is formed. Assembly of the ternary complex occurs randomly through the interactions of all three possible intermediate binary complexes; IIa.H, IIa.FnIIp, and FnIIp.H. Using an independently determined value of 280 +/- 35 nM for the FnIIp.H dissociation constant, global fits of the binding data yield a dissociation constant of 15 +/- 6 nM for the IIa.H interaction and 47 +/- 9 nM for the IIa.H intermediate binary complex interaction with FnIIp. These studies indicate that heparin enhances the binding of thrombin to fibrin polymer 6.4-fold with an overall dissociation constant for ternary complex formation of 705 nM2. The effect of heparin molecular weight on ternary complex formation has also been investigated. Heparins of molecular weights 11,200-20,300 behave similarly with respect to their influence on ternary complex formation, whereas heparins of lower molecular weight are less effective in promoting thrombin binding to fibrin polymer. This effect of heparin is also independent of whether it has high or low affinity for antithrombin III. The demonstration of the formation of a ternary IIa.FnIIp.H complex complements kinetic evidence indicating the formation of an analogous ternary complex with fibrin II monomer (Hogg, P. J., and Jackson, C. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3619-3623). The possible implications of these findings for the in vivo distribution and actions of thrombin and the clinical efficacy of heparin are also discussed. 相似文献