共查询到20条相似文献,搜索用时 15 毫秒
1.
Qiu YC Zhou RH Kong XY Zhang SS Jia JZ 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2005,111(8):1524-1531
A powdery mildew resistance gene from Triticum urartu Tum. accession UR206 was successfully transferred into hexaploid wheat (Triticum aestivum L.) through crossing and backcrossing. The F1 plants, which had 28 chromosomes and an average of 5.32 bivalents and 17.36 univalents in meiotic pollen mother cells (PMC),
were obtained through embryos rescued owing to shriveling of endosperm in hybrid seed of cross Chinese Spring (CS) × UR206.
Hybrid seeds were produced through backcrossing F1 with common wheat parents. The derivative lines had normal chromosome numbers and powdery mildew resistance similar to the
donor UR206, indicating that the powdery mildew resistance gene originating from T. urartu accession UR206 was successfully transferred and expressed in a hexaploid wheat background. Genetic analysis indicated that
a single dominant gene controlled the powdery mildew resistance at the seedling stage. To map and tag the powdery mildew resistance
gene, 143 F2 individuals derived from a cross UR206 × UR203 were used to construct a linkage map. The resistant gene was mapped on the
chromosome 7AL based on the mapped microsatellite makers. The map spanned 52.1 cM and the order of these microsatellite loci
agreed well with the established microsatellite map of chromosome arm 7AL. The resistance gene was flanked by the microsatellite
loci Xwmc273 and Xpsp3003, with the genetic distances of 2.2 cM and 3.8 cM, respectively. On the basis of the origin and chromosomal location of the
gene, it was temporarily designated PmU. 相似文献
2.
Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.) 总被引:2,自引:0,他引:2
F. J. Zeller S. L. K. Hsam 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(1-2):38-40
The chromosomal location of a suppressor for the powdery mildew resistance genes Pm8 and Pm17 was determined by a monosomic set of the wheat cultivar Caribo. This cultivar carries a suppressor gene inhibiting the expression of Pm8 in cv Disponent and of Pm17 in line Helami-105. In disease resistance assessments, monosomic F1 hybrids (2n=41) of Caribo x Disponent and Caribo x Helami-105 lacking chromosome 7D were resistant, whereas monosomic F1 hybrids involving the other 20 chromosomes, as well as disomic F1 hybrids (2n=42) of all cross combinations, were susceptible revealing that the suppressor gene for Pm8 and Pm17 is localized on chromosome 7D. It is suggested that genotypes without the suppressor gene be used for the exploitation of genes Pm8 and Pm17 in enhancing powdery mildew resistance in common wheat. 相似文献
3.
Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) 总被引:8,自引:0,他引:8
L. Hartl H. Weiss U. Stephan F. J. Zeller A. Jahoor 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,90(5):601-606
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus. 相似文献
4.
Chromosomal location of a Triticum timopheevii--derived powdery mildew resistance gene transferred to common wheat. 总被引:19,自引:0,他引:19
A dominant powdery mildew resistance gene introduced from Triticum timopheevii in line 146-155-T of common wheat, Triticum aestivum, was located on chromosome 6B by monosomic analysis. Restriction fragment length polymorphism (RFLP) and microsatellite analyses detected the presence of a T. timopheevii segment, translocated to chromosome 6B, with breakpoints between the loci Xpsr8/Xpsr964 on 6BS and Xpsr154/Xpsr546 on 6BL. The novel powdery mildew resistance gene, which has been designated Pm27, was shown to cosegregate with the microsatellite locus Xpsp3131, which is located on the introgressed T. timopheevii segment. The molecular data confirm the location of Pm27 on the translocated 6B chromosome. 相似文献
5.
Zeller F. J. Heun M. 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1985,71(3):513-517
Summary In the progeny of a hybrid between monotelosomic line 3B of Chinese Spring wheat and Chinese Spring — Aegilops longissima ditelosomic addition line G a cytologically stable strain was selected consisting of 20 wheat chromosome pairs, one pair of telosomic chromosome 3BL and one pair of telosomic longissima chromosome G. Inoculating Chinese Spring — Aegilops longissima addition and substitution lines with ten different powdery mildew isolates, partial resistance was observed. The infection grade as well as the number of spores/cm2 leaf area were significantly reduced. 相似文献
6.
Volker Mohler Christoph Bauer Günther Schweizer Hubert Kempf Lorenz Hartl 《Journal of applied genetics》2013,54(3):259-263
Fungal diseases of wheat, including powdery mildew, cause significant crop, yield and quality losses throughout the world. Knowledge of the genetic basis of powdery mildew resistance will greatly support future efforts to develop and cultivate resistant cultivars. Studies were conducted on cultivated emmer-derived wheat line K2 to identify genes involved in powdery mildew resistance at the seedling and adult plant growth stages using a BC1 doubled haploid population derived from a cross between K2 and susceptible cultivar Audace. A single gene was located distal to microsatellite marker Xgwm294 on the long arm of chromosome 2A. Quantitative trait loci (QTL) analysis indicated that the gene was also effective at the adult plant stage, explaining up to 79.0 % of the variation in the progeny. Comparison of genetic maps indicated that the resistance gene in K2 was different from Pm4, the only other formally named resistance gene located on chromosome 2AL, and PmHNK54, a gene derived from Chinese germplasm. The new gene was designated Pm50. 相似文献
7.
Michael Schmolke Volker Mohler Lorenz Hartl Friedrich J. Zeller Sai L. K. Hsam 《Molecular breeding : new strategies in plant improvement》2012,29(2):449-456
Powdery mildew is one of the most destructive foliar diseases of wheat. A set of differential Blumeria graminis f.sp. tritici (Bgt) isolates was used to test the powdery mildew response of a Triticum monococcum-derived resistant hexaploid line, Tm27d2. Segregation analysis of 95 F2:3 lines from a Chinese Spring/Tm27d2 cross revealed that the resistance of Tm27d2 is controlled by a single dominant gene.
Using monosomic analysis and a molecular mapping approach, the resistance gene was localized to the terminal end of chromosome
2AL. The linkage map of chromosome 2AL consisted of nine simple sequence repeat markers and one sequence-tagged site (STS)
marker (ResPm4) indicative for the Pm4 locus. According to the differential reactions of 19 wheat cultivars/lines with known powdery mildew resistance genes to
13 Bgt isolates, Tm27d2 carried a new resistance specificity. The complete association of the resistance allele with STS marker
ResPm4 indicated that it represented a new allele at the Pm4 locus. This new allele was designated Pm4d. The two flanking markers Xgwm526 and Xbarc122 closely linked to Pm4d at genetic distances of 3.4 and 1.0 cM, respectively, are present in chromosome bin 2AL1-0.85-1.00. 相似文献
8.
Stripe rust is one of the most destructive diseases for wheat crops in China. Two stripe rust physiological strains, i.e. CYR30 (intern. name: 175E191) and CYR31 (intern. name: 293E175) have been the dominant and epidemic physiological strains since 1994. One Aegilops tauschii accession (SQ-214) from CIMMYT was found immune from or highly resistant to Chinese new stripe rust races CYR30 and CYR31 at adult stage. SQ-214 was crossed with a highly susceptible Ae. tauschii accession As-80. Analysis of data from F1-F2 populations of SQ-214/As-80 revealed that the resistance was controlled by a single dominant gene. To exploit the resistance for wheat breeding, SQ-214 was crossed with Chinese Spring (CS) and backcrossed by two Chinese commercial wheat varieties MY26 and SW3243. The resistance from SQ-214 was suppressed in the F1 hybrids (CS/SQ-214) and the F2 population of CS/SQ-214//MY26. However, the resistance of SQ-214 was expressed in several F2 individuals of CS/SQ-214//SW3243. Eleven advanced lines with high level of resistance to the Chinese stripe rust CYR30 and CYR31 have been developed. This result suggested that SW3243 does not suppress the expression of the Chinese stripe rust and should be used as wheat germplasm for exploiting resistance of Ae. tauschii in wheat breeding. The gliadin electrophoretic pattern of the eleven advanced lines with high stripe rust resistances was compared with their parents SQ-214, CS and SW3243 by acid polyacrylamide gel electrophoresis. The omega-gliadin bands of Gli-Dt1 in Ae. tauschii SQ-214 were transferred to some advanced lines and freely expressed in common wheat genetic background. One of advanced lines possesses a null Gli-D1 allele, where the omega-gliadin bands encoding by the Gli-D1 allele were absent. The potential utilization of this advanced line for wheat quality and stripe rust resistance breeding is also discussed in this paper. 相似文献
9.
S. L. K. Hsam X. Q. Huang F. J. Zeller 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2001,102(1):127-133
Genetic characterization of powdery mildew resistance genes were conducted in common wheat cultivars Hope and Selpek possessing
resistance gene Pm5, cvs. Ibis and Kormoran expressing resistance gene Mli, a backcross-derived line IGV 1–455 and a Triticum sphaerococcum var. rotundatum Perc. line Kolandi. Monosomic analyses revealed that one major recessive gene is located on chromosome 7B in the lines IGV
1–455 and Kolandi. Allelism tests of the F2 and F3 populations involving the tested resistant lines crossed with either cv. Hope or Selpek indicated that their resistance genes
are alleles at the Pm5 locus. The alleles are now designated Pm5a in Hope and Selpek, Pm5b in Ibis and Kormoran, Pm5c in T. sphaerococcum var. rotundatum line Kolandi, and Pm5d in backcross-derived line IGV 1–455, respectively.
Received: 5 November 1999 / Accepted: 14 April 2000 相似文献
10.
Xiu-Qiang Huang Sai L K Hsam Volker Mohler Marion S R?der Friedrich J Zeller 《Génome》2004,47(6):1130-1136
A set of differential isolates of Blumeria graminis f.sp. tritici was used to identify 10 alleles at the Pm3 locus on the short arm of chromosome 1A. Three F3 populations were used to map Pm3h in Abessi, Pm3i in line N324, and Pm3j alleles in GUS 122 relative to microsatellite markers. In total, 13 marker loci were mapped on chromosome 1AS and 1 marker on 1AL. The order of marker loci in the 3 mapping populations is consistent with previously published maps. All 3 alleles were mapped in the distal region of chromosome 1AS. The present study indicated that microsatellite markers are an ideal marker system for comparative mapping of alleles at the same gene locus in different mapping populations. The linkage distances of the closest microsatellite marker, Xgwm905-1A, to Pm3h, Pm3i, and Pm3j were 3.7 cM, 7.2 cM, and 1.2 cM, respectively. The microsatellite marker Xgwm905-1A cannot be used to distinguish between Pm3 alleles. The development of specific markers for individual Pm3 alleles is discussed on the basis of the recently cloned Pm3b allele. 相似文献
11.
X. Q. Huang S. L. K. Hsam F. J. Zeller 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1997,95(5-6):950-953
Chinese wheat landrace Chiyacao exhibited a response pattern different from that of the cultivars/lines possessing documented
Pm genes after inoculation with 106 isolates of Erysiphe graminis f. sp. tritici. To characterize this resistance and to determine the chromosomal location of the gene or genes present, we crossed the landrace
to susceptible cultivar ‘Chinese Spring’ and also to a set of 21 ‘Chinese Spring’ monosomic lines. Monosomic F1 plants were allowed to self-pollinate and to produce F2 seeds. Seedlings of F2 plants and their parents were inoculated with isolates nos. 5 and 12 of Erysiphe graminis f. sp. tritici. The results revealed that one major dominant gene is located on chromosome 6D of Chinese common wheat landrace Chiyacao.
The new gene is designated Pm 24.
Received: 12 May 1997 / Accepted: 23 May 1997 相似文献
12.
E3 ubiquitin ligase gene CMPG1–V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.) 下载免费PDF全文
Fei Fei Zongkuan Wang Wei Wang Aizhong Cao Yuan Liu Shuang Han Liping Xing Haiyan Wang Wei Chen Sanyuan Tang Xiahe Huang Qianhua Shen Qi Xie Xiue Wang 《The Plant journal : for cell and molecular biology》2015,84(1):154-168
Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1–V, that encodes a U–box E3 ubiquitin ligase. Expression of the CMPG1–V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1–V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1–V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans‐Golgi network/early endosome vesicles. Transgenic wheat over‐expressing CMPG1–V showed improved broad‐spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid‐responsive genes, H2O2 accumulation, and cell‐wall protein cross‐linking at the Bgt infection sites, and the expression of CMPG1–V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2O2. These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad‐spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1–V‐mediated powdery mildew resistance. 相似文献
13.
14.
S. L. K. Hsam X. Q. Huang F. Ernst L. Hartl F. J. Zeller 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,96(8):1129-1134
The chromosomal location and genetic characterization of powdery mildew resistance genes were determined in the common wheat
lines MocZlatka, Weihenstephan Stamm M1N and in a resistant line of Triticum aestivum ssp. spelta var. duhamelianum. Monosomic analyses revealed that one major dominant gene is located on chromosome 7A in each of the lines tested. Allelism
tests with Pm1 in the backcross-derived line Axminster/8*Cc on 7A indicated that the resistance genes are alleles at the Pm1 locus. These alleles are now designated Pm1a in line Axminster/8*Cc, Pm1b in MocZlatka, Pm1c in Weihenstephan Stamm M1N, and Pm1d in T. spelta var. duhamelianum, respectively.
Received: 10 November 1997 / Accepted: 29 January 1998 相似文献
15.
L. Hartl H. Weiss F. J. Zeller A. Jahoor 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1993,86(8):959-963
The objective of this study was to identify molecular markers linked to genes for resistance to powdery mildew (Pm) in wheat using a series of Chancellor near-isogenic-lines (NILs), each having one powdery mildew resistance gene. A total of 210 probes were screened for their ability to detect polymorphism between the NILs and the recurrent parent. One of these restriction fragment length polymorphism (RFLP) markers (Xwhs179) revealed polymorphism not only between the NILs for the Pm3 locus, but also among NILs possessing different alleles of the Pm3 locus. The location of the marker Xwhs179 was confirmed to be on homoeologous chromosome group 1 with the help of nullitetrasomic wheat lines. The linkage relationship between this probe and the Pm3 locus was estimated with double haploid lines derived from a cross between wheat cvs Club and Chul (Pm3b). The genetic distance was determined to be 3.3±1.9 cM. 相似文献
16.
Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat 总被引:3,自引:0,他引:3
Stine Petersen Jeanette H. Lyerly Margaret L. Worthington Wesley R. Parks Christina Cowger David S. Marshall Gina Brown-Guedira J. Paul Murphy 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2015,128(2):303-312
17.
P. G. Luo H. Y. Luo Z. J. Chang H. Y. Zhang M. Zhang Z. L. Ren 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2009,118(6):1059-1064
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a very destructive wheat (Triticum aestivum) disease. Resistance was transferred from Elytrigia intermedium to common wheat by crossing and backcrossing, and line GRY19, that was subsequently selected, possessed a single dominant
gene for seedling resistance. Five polymorphic microsatellite markers, Xgwm297, Xwmc335, Xwmc364, Xwmc426 and Xwmc476, on chromosome arm 7BS, were mapped relative to the powdery mildew resistance locus in an F2 population of Mianyang 11/GRY19. The loci order Xwmc426–Xwmc335–Pm40–Xgwm297–Xwmc364–Xwmc476, with 5.9, 0.2, 0.7, 1.2 and 2.9 cM genetic distances, was consistent with published maps. The resistance gene transferred
from Elytrigia intermedium into wheat line GRY19 was novel, and was designated Pm40. The close flanking markers will enable marker assisted transfer of this gene into wheat breeding populations.
P.G. Luo and H.Y. Luo contributed equally to the work. 相似文献
18.
19.
Using hybrid analysis and test-clone method, 102 accessions of Triticum monococcum L. from the collection of the Vavilov All-Russia Institute of Plant Industry have been studied. This species of wheat has been found to by considerably polymorphic with respect to the resistance to the fungus Erysiphe graminis DC. f. sp. tritici Marchal. causing powdery mildew. The resistance of most accessions to the fungus population and clones is determined by dominant genes. In rare cases, the resistance was determined by recessive genes or one, two, or three oligogenes. A group of einkorn wheat accessions has been found in which the resistance to powdery mildew was determined by the same dominant factor or different but closely linked ones. Recessive resistance genes of T. monococcum differ from the recessive gene pm5 determining the resistance of T. aestivum plants. The genome of T. monococcum contains various genes of resistance to powdery mildew and is a potential source of effective genes to be used when selecting cultivated species of wheat for immunity. 相似文献
20.
The potential of a genome-substituted form Avrolata (AABBUU) as a genetic system in genomic and chromosome manipulations for gene transfer from the wild species Aegilops umbellulata Eig. (UU) to cultivated wheat was studied. It was shown that plants combining resistance to leaf brown rust with high productivity may be produced from this form by classical hybridization procedures. The resistance gene introduced to line R-12 is dominant and probably identical to the Lr9 gene. By N-banding, chromosome staining technique and gliadin electrophoresis, the structural changes in chromosomes 1A, 2A, 4B, 6B, 7B, 1D, and 2D of the resistant line R-12 were revealed. 相似文献