首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetes increases the risk of stroke and contributes to poor clinical outcomes in this patient population. Myogenic tone of the cerebral vasculature, including basilar arteries, plays a key role in controlling cerebral blood flow. Increased myogenic tone is ameliorated with ET receptor antagonism in Type 1 diabetes. However, the role of endothelin-1 (ET-1) and its receptors in cerebrovascular dysfunction in Type 2 diabetes, a common comorbidity in stroke patients, remains poorly elucidated. Therefore, we hypothesized that 1) cerebrovascular dysfunction occurs in the Goto-Kakizaki (GK) model of Type 2 diabetes, and 2) pharmacological antagonism of ETA receptors ameliorates, while ETB receptor blockade augments vascular dysfunction. GK or control rats were treated with antagonists to either ETA (atrasentan, 5 mg.kg(-1).day(-1)) or ETB (A-192621, 15 or 30 mg.kg(-1).day(-1)) receptors for 4 wk and vascular function of basilar arteries was assessed using a wire myograph. GK rats exhibited increased sensitivity to ET-1. ET(A) receptor antagonism caused a rightward shift, indicating decreased sensitivity in diabetes, while it increased sensitivity to ET-1 in control rats. Endothelium-dependent relaxation was impaired in diabetes. ETA receptor blockade restored relaxation to control values in the GK animals with no significant effect in Wistar rats and ETB blockade with 30 mg.kg(-1).day(-1) A-192621 caused paradoxical constriction in diabetes. These studies demonstrate that cerebrovascular dysfunction occurs and may contribute to altered regulation of myogenic tone and cerebral blood flow in diabetes. While ETA receptors mediate vascular dysfunction, ETB receptors display differential effects. These results underscore the importance of ETA/ETB receptor balance and interactions in cerebrovascular dysfunction in diabetes.  相似文献   

2.
Vascular dysfunction, which presents either as an increased response to vasoconstrictors or an impaired relaxation to dilator agents, results in worsened cardiovascular outcomes in diabetes. We have established that the mesenteric circulation in Type 2 diabetes is hyperreactive to the potent vasoconstrictor endothelin-1 (ET-1) and displays increased nitric oxide-dependent vasodilation. The current study examined the individual and/or the relative roles of the ET receptors governing vascular function in the Goto-Kakizaki rat, a mildly hyperglycemic, normotensive, and nonobese model of Type 2 diabetes. Diabetic and control rats received an antagonist to either the ET type A (ETA; atrasentan; 5 mg x kg(-1) x day(-1)) or type B (ET(B); A-192621; 15 or 30 mg x kg(-1) x day(-1)) receptors for 4 wk. Third-order mesenteric arteries were isolated, and vascular function was assessed with a wire myograph. Maximum response to ET-1 was increased in diabetes and attenuated by ETA antagonism. ETB blockade with 15 mg/kg A-192621 augmented vasoconstriction in controls, whereas it had no further effect on ET-1 hyperreactivity in diabetes. The higher dose of A-192621 showed an ETA-like effect and decreased vasoconstriction in diabetes. Maximum relaxation to acetylcholine (ACh) was similar across groups and treatments. ETB antagonism at either dose had no effect on vasorelaxation in control rats, whereas in diabetes the dose-response curve to ACh was shifted to the right, indicating a decreased relaxation at 15 mg/kg A-192621. These results suggest that ETA receptor blockade attenuates vascular dysfunction and that ETB receptor antagonism exhibits differential effects depending on the dose of the antagonists and the disease state.  相似文献   

3.
Our previous work showed that ET-1 induced a concentration-dependent increase of cytosolic Ca2+ ([Ca]c) and nuclear Ca2+ ([Ca]n) in human aortic vascular smooth muscle cells (hVSMCs). In the present study, using hVSMCs and 3-dimensional confocal microscopy coupled to the Ca2+ fluorescent probe Fluo-3, we showed that peptidic antagonists of ETA and ETB receptors (BQ-123 (10(-6) mol/L) and BQ-788 (10(-7) mol/L), respectively) prevented, but did not reverse, ET-1-induced sustained increase of [Ca]c and [Ca]n. In contrast, nonpeptidic antagonists of ETA and ETB (respectively, BMS-182874 (10(-8)-10(-6) mol/L) and A-192621 (10(-7) mol/L)) both prevented and reversed ET-1-induced sustained increase of [Ca]c and [Ca]n. Furthermore, activation of the ETB receptor alone using the specific agonist IRL-1620 (10(-9) mol/L) induced sustained increases of [Ca]c and [Ca]n, and subsequent administration of ET-1 (10(-7) mol/L) further increased nuclear Ca2+. ET-1-induced increase of [Ca]c and [Ca]n was completely blocked by extracellular application of the Ca2+ chelator EGTA. Pretreatment with the G protein inhibitors pertussis toxin (PTX) and cholera toxin (CTX) also prevented the ET-1 response; however, strong membrane depolarization with KCl (30 mmol/L) subsequently induced sustained increase of [Ca]c and [Ca]n. Pretreatment of hVSMCs with either the PKC activator phorbol-12,13-dibutyrate or the PKC inhibitor bisindolylmaleimide did not affect ET-1-induced sustained increase of intracellular Ca2+. These results suggest that both ETA- and ETB-receptor activation contribute to ET-1-induced sustained increase of [Ca]c and [Ca]n in hVSMCs. Moreover, in contrast to the peptidic antagonists of ET-1 receptors, the nonpeptidic ETA-receptor antagonist BMS-182874 and the nonpeptidic ETB-receptor antagonist A-192621 were able to reverse the effect of ET-1. Nonpeptidic ETA- and ETB-receptor antagonists may therefore be better pharmacological tools for blocking ET-1-induced sustained increase of intracellular Ca2+ in hVSMCs. Our results also suggest that the ET-1-induced sustained increase of [Ca]c and [Ca]n is not mediated via activation of PKC, but via a PTX- and CTX-sensitive G protein calcium influx through the R-type Ca2+ channel.  相似文献   

4.
We showed recently that endothelin (ET)A receptors are involved in the salt sensitivity of ANG II-induced hypertension. The objective of this current study was to characterize the role of endothelin ETB receptor activation in the same model. Male rats on fixed normal (2 meq/day) or high (6 meq/day) salt intake received a continuous intravenous infusion of ANG II or salt only for 15 days. During the middle 5 days of the infusion period, rats were given either the selective ETB receptor antagonist A-192621 or the nonselective endothelin receptor antagonist A-182086 (both at 24 mg x kg(-1) x day(-1) intra-arterially). Infusion of ANG II caused a greater rise in arterial pressure in rats on high-salt intake. The administration of A-192621 increased arterial pressure further in all rats. The chronic hypertensive effect of A-192621 was not significantly affected by salt intake or ANG II. The administration of A-182086 lowered arterial pressure chronically only in rats on normal salt intake receiving ANG II. Thus the salt sensitivity of ANG II-induced hypertension is not caused by changes in ETB receptor function.  相似文献   

5.
We hypothesized that constitutive endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) have opposite effects on the regulation of endothelin and its receptors. We therefore sought to determine whether deletions of iNOS or eNOS genes in mice modulate pressor responses to endothelin and the expression of ETA and ETB receptors in a similar fashion. Despite unchanged baseline hemodynamic parameters, anesthetized iNOS-/- mice displayed reduced pressor responses to endothelin-1, but not to that of IRL-1620, a selective ETB agonist. Protein content of cardiac ETA receptors was reduced in iNOS-/- mice compared with wild-type mice, but that of ETB receptors was unchanged. Anesthetized eNOS-/- mice presented a hypertensive state, accompanied by an enhanced pressor response to intravenous endothelin-1, whereas the pressor response to IRL-1620 was reduced. Protein levels were also found to be increased for ETA receptors, but reduced for ETB receptors, in cardiac tissues of eNOS-/- mice. In conscious animals, both strains responded equally to the hypotensive effect of an ETA antagonist, ABT-627, whereas orally administered A-192621, an ETB antagonist, increased MAP to a greater extent in eNOS-/- than in wild-type mice. Furthermore, significant levels of immunoreactive endothelin were found in mesenteric arteries in eNOS-/- but not in iNOS-/- or wild-type congeners. Our study shows that repression of iNOS or eNOS has differential effects on endothelin-1 and its receptors. We have also shown that the heart is the main organ in which iNOS or eNOS repression induces important alterations in protein content of endothelin receptors in adult mice.  相似文献   

6.
The aim of this study was to verify whether an alteration in the aortic endothelin-1 (ET-1) response takes place in UM-X7.1 cardiomyopathic hamsters. Our results showed that ET-1 (10(-12) - 10(-5) mol/L) induces dose-dependent sustained increases in tension in the intact and endothelium denuded aortas from both normal and cardiomyopathic hamsters. The EC50 values of ET-1 of both intact and endothelium denuded aortas of normal hamsters were similar (2.2 x 10(-9) mol/L and 1.8 x 10(-9) mol/L, respectively). However, in cardiomyopathic hamsters, the EC50 of ET-1 in intact aortas was higher (1.5 x 10(-8) mol/L) than that of the endothelium denuded preparations (2.7 x 10(-9) mol/L). The EC50 of ET-1 in normal and cardiomyopathic hamster denuded aortas were similar. However, the EC50 of ET-1 in intact aortas of cardiomyopathic hamster was higher (1.5 x 10(-8) mol/L) than that of normal hamsters (2.2 x 10(-9) mol/L). Pre-treatment with the ETA receptor antagonist ABT-627 (10(-5)mol/L) of intact and endothelium denuded aortas from both normal and cardiomyopathic hamsters significantly prevented ET-1 (10(-7) mol/L) from inducing an increase in tension. Pre-treatment with the ETB receptor antagonist A-192621 (10(-5) mol/L) had no effect on the ET-1-induced increase in tension in endothelium denuded aortas of both normal and cardiomyopathic hamsters, as well as in intact preparations of normal animals. However, blockade of the ETB receptors in intact aortas of cardiomyopathic hamsters significantly (p < 0.001) potentiated the ET-1-induced increase in tension. In summary, an attenuation of the contraction response to ET-1 was found in UM-X7.1 cardiomyopathic hamsters when compared with normal age-matched hamsters. This alteration of the ET-1 effect in the aortas of cardiomyopathic hamsters seems to be dependent on the presence of the endothelium and could be due, in part, to an increase in the contribution of endothelial ETB receptors to relaxation, which in turn acts as a physiological depressor of ET-1 vasoconstriction. Our results suggest that an increase in the endothelium ETB receptor density may play a role in the development of hypotension in UM-X7.1 cardiomyopathic hamsters.  相似文献   

7.
In the vascular system, endothelin (ET) type B (ET(B)) receptors for ET-1 are located on endothelial and on venous and arterial smooth muscle cells. In the present study, we investigated the hemodynamic effects of chronic ET(B) receptor blockade at low and high doses in the Syrian Golden hamster. After 16 days of gavage with A-192621 (0.5 or 30 mg.kg(-1).day(-1)), a selective ET(B) receptor antagonist, hamsters were anesthetized with a mixture of ketamine and xylazine (87 and 13 mg/kg im, respectively), and basal mean arterial blood pressure (MAP) and pressor responses to exogenous ET-1 were evaluated. The lower dose of A-192621 (0.5 mg.kg(-1).day(-1)) did not modify basal MAP, whereas the higher dose (30 mg.kg(-1).day(-1)) increased MAP and plasma ET levels. Radio-telemetry recordings confirmed the increase in MAP induced by the higher dose of A-192621 in conscious hamsters. On the other hand, although the lower dose of A-192621 was devoid of intrinsic pressor effects, it markedly reduced the transient hypotensive phase induced by intravenously injected IRL-1620, a selective ET(B) receptor agonist. Finally, A-192621 (0.5 mg.kg(-1).day(-1)) alone or A-192621 (30 mg.kg(-1).day(-1)) + atrasentan (6 mg.kg(-1).day(-1)), a selective ET(A) receptor antagonist, potentiated the pressor response to exogenous ET-1. Our results suggest that, in the hamster, ET(B) receptors on vascular smooth muscle cells are importantly involved in the clearance of endogenous ET-1, whereas the same receptor type on the endothelium is solely involved in the vasodilatory responses to the pressor peptide. Blockade of endothelial and vascular smooth muscle cell ET(B) receptors triggers a marked potentiation of ET(A)-dependent increases in systemic resistance.  相似文献   

8.
Clearance of human peptide endothelin-1 (ET-1) has been proposed to follow a receptor pathway involving a cascade of ET-1 receptor endocytosis and lysosomal degradation by a family of proteinases expressed constitutively by most cells. Genetically distinct endopeptidases produce ET-1 and degrade mature peptide. The ET-1 degradation products were considered to be inactive, however, recent evidence suggests that ET-1 fragments sustain most of the homeostatic response produced by parent peptides. The purpose of this study was to establish whether the overall structure of human ET-1 or the structure of its C-terminus is responsible for the subtype-selectivity, down-regulation and clearance of endothelin, and whether D-aminoacid substitution in the moiety of synthetic peptide is involved in effective ET-1 antagonism in coronary vascular smooth muscle. To characterize specific mechanism(s) leading to subtype-selective ET-receptor down-regulation and/or to ET-1 antagonism, ligand binding studies were accomplished with radioactive human (1-21)ET-1 and with C-terminal ET-1 fragments, both peptide agonists and antagonists, in adult male porcine coronary artery vascular smooth muscle (CVSM). The subcellular membranes of CVSM were isolated by isopycnic gradient centrifugation. Exposure of porcine coronary artery to exogenous ET-1 induced endothelin-ETB selective down-regulation. ETA-mediated subtype-ETB down-regulation was observed with distribution of ligand-ETB receptor complexes in light, endosomal, membranes. The ETA selective PD151242 significantly attenuated [3H]-thymidine incorporation, and the ETB selective antagonist BQ788 blocked down-regulation observed in porcine vascular fibroblasts (PF). Preincubation of coronary arteries with ETB selective BQ3020 was accompanied with a more intense down-regulation. CONCLUSION: our data are indicative of short-term ETB selective down-regulation of endothelin receptors in coronary vascular smooth muscle after exposure to ET-1. The presence in the carboxy-terminus of (Ala11,15) substitution in peptide fragments IRL1620 and BQ3020 determined the differential specificity of ETB-receptor coupling and was important for subtype-ETB-receptor down-regulation. The activation of the dominating ETA-receptor by ET-1 facilitated mitogenic responses to ET-1 in porcine vascular fibroblasts.  相似文献   

9.
Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA) and endothelin receptor B (ETB). Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p.) or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p.), atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios). Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.  相似文献   

10.
We describe novel potent endothelin (ET) antagonists that are highly potent and selective for the ETA receptor (selective to ET-1). Of the synthetic analogs based on ETA antagonist BE-18257A isolated from Streptomyces misakiensis (IC50 value for ETA receptor on porcine aortic smooth muscle cells (VSMCs); 1.4 microM), the compounds BQ-123 and BQ-153 greatly improved the binding affinity of [125I]ET-1 for ETA receptors on VSMCs (IC50; 7.3 and 8.6 nM, respectively), whereas they barely inhibited [125I]ET-1 binding to ETB receptors (nonselective with respect to isopeptides of ET family) in the cerebellar membranes (IC50; 18 and 54 microM, respectively). Associated with the increased affinity for ETA receptors, these peptides antagonized ET-1-induced constriction of isolated porcine coronary artery. However, there was a small amount of ET-1-induced vasoconstriction resistant to these antagonists, which paralleled the incomplete inhibition of [125I]ET-1 binding in the membrane of the aortic smooth muscle layer. These data suggest that the artery has both ETA and ETB receptors responsible for ET-1-induced vasoconstriction. The antagonists shifted the concentration-response curve to the right for ET-1 in the coronary artery, and increased the apparent dissociation constant in the Scatchard analysis of [125I]ET-1 binding on the VSMCs without affecting the binding capacity, indicative of the competitive antagonism for ETA receptor. In conscious rats, pretreatment with the antagonists markedly antagonized ET-1-induced sustained pressor responses in dose-dependent fashion without affecting ET-1-induced transient depressor action, suggesting that the pressor action is mediated by ETA receptors, while the depressor action is mediated by ETB receptors. In addition, pretreatment with the potent antagonists prevented ET-1-induced sudden death in mice. Thus, these potent ETA antagonists should provide a powerful tool for exploring the therapeutic uses of ETA antagonists in putative ET-1-related disorders.  相似文献   

11.
Endothelin-1 (ET-1) is a 21-amino acid residue (ET-1[1-21]) hypertensive peptide, which together with its receptor subtypes A and B (ETA and ETB) is expressed in the rat adrenal cortex, where it stimulates steroid-hormone (aldosterone and corticosterone) secretion through the ETB receptor and the growth (proliferative activity) of the zona glomerulosa (ZG) through the ETA receptor. ET-1[1-21] is generated from bigET-1 by the endothelin-converting enzyme (ECE-1). However, recent evidence indicates the existence of an alternative chymase-mediated biosynthetic pathway leading to the production of an ET-1[1-31] peptide, which was found to reproduce the ETA receptor-mediated vascular effects of ET-1[1-21]. We found that ET-1[1-21], but not ET-1[1-31], concentration-dependently raised steroid secretion from dispersed rat adrenocortical cells, its effect being blocked by the ETB-receptor selective antagonist BQ-788. Both ET-1s concentration-dependently increased the number of "S-phase" cells (as detected by the 5-bromo-2'-deoxyuridine immunocytochemical method) in capsule-ZG strips within a 240 min incubation. The ZG proliferogenic action of both ET-1s was blocked by the ETA-receptor antagonist BQ-123, and ET-1[1-31] was found to be significantly more potent than ET-1[1-21]. Autoradiography showed that in the rat adrenal ET-1[1-21] displaced the binding of selective ligands to both ETA ([125I]PD-151242) and ETB receptors ([125I]BQ-3020), while ET-1[1-31] eliminates only the binding to ETA receptors. Collectively, our findings provide strong evidence that ET-1[1-31] acts in the rat adrenal glands as a selective ETA-receptor agonist, mainly involved in the stimulation of ZG proliferative activity.  相似文献   

12.
We have investigated the role of NAADP-mediated Ca(2+) mobilization in endothelin (ET) signaling via endothelin receptor subtype A (ETA) and endothelin receptor subtype B (ETB) in rat peritubular smooth muscle cells. Microinjection and extracellular application of NAADP were both able to elicit Ca(2+) release which was blocked by inhibitory concentrations of NAADP, by impairing Ca(2+) uptake in acidic stores with bafilomycin, and by thapsigargin. Ca(2+) release in response to selective ETB stimulation was abolished by inhibition of NAADP signaling through the same strategies, while these treatments only partially impaired ETA-dependent Ca(2+) signaling, showing that transduction of the ETB signal is dependent on NAADP. In addition, we show that lipid rafts/caveolae contain ETA, ETB, and NAADP/cADPR generating enzyme CD38 and that stimulation of ETB receptors results in increased CD38 activity; interestingly, ETB- (but not ETA-) mediated Ca(2+) responses were antagonized by disruption of lipid rafts/caveolae with methyl-beta-cyclodextrin. These data demonstrate a primary role of NAADP in ETB-mediated Ca(2+) signaling and strongly suggest a novel role of lipid rafts/caveolae in triggering ET-induced NAADP signaling.  相似文献   

13.
The net contribution of endothelin type A (ET(A)) and type B (ET(B)) receptors in blood pressure regulation in humans and experimental animals, including the conscious mouse, remains undefined. Thus we assessed the role of ET(A) and ET(B) receptors in the control of basal blood pressure and also the role of ET(A) receptors in maintaining the hypertensive effects of systemic ET(B) blockade in telemetry-instrumented mice. Mean arterial pressure (MAP) and heart rate were recorded continuously from the carotid artery and daily (24 h) values determined. At baseline, MAP ranged from 99 +/- 1 to 101 +/- 1 mmHg and heart rate ranged between 547 +/- 15 and 567 +/- 19 beats/min (n = 6). Daily oral administration of the ET(B) selective antagonist A-192621 [10 mg/kg twice daily] increased MAP to 108 +/- 1 and 112 +/- 2 mmHg on days 1 and 5, respectively. Subsequent coadministration of the ET(A) selective antagonist atrasentan (5 mg/kg twice daily) in conjunction with A-192621 (10 mg/kg twice daily) decreased MAP to baseline values on day 6 (99 +/- 2 mmHg) and to below baseline on day 8 (89 +/- 3 mmHg). In a separate group of mice (n = 6) in which the treatment was reversed, systemic blockade of ET(B) receptors produced no hypertension in animals pretreated with atrasentan, underscoring the importance of ET(A) receptors to maintain the hypertension produced by ET(B) blockade. In a third group of mice (n = 10), ET(A) blockade alone (atrasentan; 5 mg/kg twice daily) produced an immediate and sustained decrease in MAP to values below baseline (baseline values = 101 +/- 2 to 103 +/- 2 mmHg; atrasentan decreased pressure to 95 +/- 2 mmHg). Thus these data suggest that ET(A) and ET(B) receptors play a physiologically relevant role in the regulation of basal blood pressure in normal, conscious mice. Furthermore, systemic ET(B) receptor blockade produces sustained hypertension in conscious telemetry-instrumented mice that is absent in mice pretreated with an ET(A) antagonist, suggesting that ET(A) receptors maintain the hypertension produced by ET(B) blockade.  相似文献   

14.
Trigeminal neuropathic pain, which is associated with marked orofacial mechanical allodynia, is frequently refractory to currently available drugs. Because endothelins (ETs) can contribute to nociceptive changes in animal models of inflammatory, cancer, and diabetic neuropathic pain, the present study evaluated the influence of ET(A) and ET(B) receptor antagonists on orofacial mechanical allodynia in a rat model of trigeminal neuropathic pain. Unilateral constriction (C) of the infraorbital nerve (ION) caused pronounced and sustained bilateral mechanical allodynia, evaluated by application of von Frey hairs to the vibrissal pad. Mechanical allodynia on postoperative days 12-15 after nerve injury was abolished for up to 90 mins by subcutaneous administration of 2.5 mg/kg morphine, but was fully refractory to intravenous (iv) administration of 10 mg/kg of the dual ET(A) plus ET(B) or selective ET(A) receptor antagonists, bosentan and atrasentan, respectively. In sharp contrast, iv administration of 20 mg/kg of the selective ET(B) receptor antagonist, A-192621, caused a net 61 +/- 15% reduction of mechanical threshold, lasting 2 hrs. Co-injection of atrasentan plus A-192621 did not modify ION injury-induced mechanical allodynia. Injection of 10 pmol ET-1 into the upper lip of naive rats caused ipsilateral mechanical allodynia lasting up to 5 hrs. Thus, ET(B) receptor-mediated mechanisms contribute to orofacial mechanical allodynia induced by CION injury, but, some-how, functional ET(A) receptors are required for expression of the antiallodynic effect of ET(B) receptor blockade.  相似文献   

15.
Recently it was demonstrated that treatment with a nonselective endothelin (ET) receptor antagonist significantly reduces myocardial infarct size, which suggests a major role for ET in tissue repair following myocardial infarction (MI). Tissue repair and remodeling found at the site of MI are mainly attributed to myofibroblasts (myoFbs), which are phenotypically transformed fibroblasts that express alpha-smooth muscle actin. It is unclear whether myoFbs generate ET peptides and consequentially regulate pathophysiological functions de novo through expression of the ET-1 precursor (prepro-ET-1), ET-converting enzyme-1 (ECE-1), a metalloprotease that is required to convert Big ET-1 to ET-1 and ET receptors. To address these intriguing questions, we used cultured myoFbs isolated from 4-wk-old MI scar tissue. In cultured cells, we found: 1) expression of mRNA for ET precursor gene (ppET1), ECE-1, and ETA and ETB receptors by semiquantitative RT-PCR; 2) phosphoramidon-sensitive ECE-1 activity, which converts Big ET-1 to biologically active peptide ET-1; 3) expression of ETA and ETB receptors; 4) elaboration of Big ET-1 and ET-1 peptides in myoFb culture media; and 5) upregulation of type I collagen gene expression and synthesis by ET, which was blocked by bosentan (a nonselective ETA- and ETB receptor blocker). These studies clearly indicated that myoFbs express and generate ET-1 and receptor-mediated modulation of type I collagen expression by ET-1. Locally generated ET-1 may contribute to tissue repair of the infarcted heart in an autocrine/paracrine manner.  相似文献   

16.
A linear endothelin (ET) analog, N-acetyl-LeuMetAspLysGluAlaValTyrPheAlaHisLeu-AspIleIleTrp (BQ-3020), is highly selective for ETB receptors. BQ-3020 displaces [125I]ET-1 binding to ETB receptors (nonselective to ET isopeptides) in porcine cerebellar membranes (IC50: 0.2nM) at a concentration 4,700 times lower than that to ETA receptors (selective to ET-1) on aortic vascular smooth muscle cells (VSMC) (IC50: 940nM). BQ-3020 as well as ET-1 and ET-3 elicits vasoconstriction in the rabbit pulmonary artery. The ETA antagonist BQ-123 failed to inhibit this BQ-3020-induced vasoconstriction. Furthermore, BQ-3020 elicits endothelium-dependent vasodilation. These data indicate that BQ-3020 has ETB agonistic activity. The radioligand [125I]BQ-3020 binds to cerebellar membranes at single high affinity sites (Kd = 34.4pM), whereas it scarcely binds to VSMC. [125I]BQ-3020 binding to the cerebellum was displaced by BQ-3020, ET-1 and ET-3 in a nonselective manner (IC50: 0.07-0.17nM). However, the binding of [125I]BQ-3020 was insensitive to the ETA antagonist BQ-123 and other bioactive peptides. Both [125I]ET-1 and [125I]BQ-3020 show slow onset and offset binding kinetics to ETB receptors. These data indicate that the radioligand [125I]BQ-3020 selectively labels ETB receptors and that the slow binding kinetics of ET-1 are dependent on the peptide sequence from Leu6 to Trp21, but not on the structure formed by its two disulfide bridges.  相似文献   

17.
Endothelin-1 (ET-1) is a potent mitogen and modulator of vascular tone. It is synthesized and released from endothelial cells and acts upon two receptor subtypes designated as ETA and ETB. In this study, a series of potent dipeptide sulfonamide dual-endothelin ETA/ETB receptor antagonists were prepared to investigate their potential benefit in vascular diseases. CGS 31398 inhibited [125I]ET-1 binding to human ETA and ETB receptors expressed in Chinese hamster ovary (CHO) cells (ETA/CHO, ETB/CHO) with respective IC50 values of 0.26 and 0.12 nM. However, in anesthetized rats, this compound markedly potentiated ET-1-induced renal vascular resistance, a response normally observed with selective ETB receptor antagonists. To determine whether species differences account for these results, a direct comparison was made between binding to rat and rabbit aortic membranes versus functional antagonism in isolated rat aortic rings. It was found that CGS 31398 had potent affinity for the ETA receptor in rat and rabbit aorta with IC50 values of 0.87 and 0.79 nM, respectively. Inhibition of ET-1-induced contractions of rat aorta by the compound was considerably weaker than expected (pKB = 6.4), while that of sarafotoxin S6c induced contraction of dog saphenous vein (100% inhibition at 100 nM) was consistent with corresponding binding data. These results suggest that although CGS 31398 is a potent dual inhibitor of ETA/ETB receptor binding, it surprisingly displays potent ETB and weak ETA receptor antagonism in functional assays.  相似文献   

18.
The effects of endothelin (ET) receptor blockade on energy utilization in heart failure (HF) are unknown. We administered ET type A (ETA), ET type B (ETB), and ETA/ETB antagonists to isolated hearts from Dahl salt-sensitive (DS) rats with HF and controls. Contractile efficiency was assessed as slope-1 of myocardial O consumption (VO2)-pressure-volume area relation. In HF, ETA and ETA/ETB but not ETB blockade decreased the contractility index (Emax)(-15 +/- 3% and -17 +/- 2%, P < 0.05), excitation-contraction (E-C) coupling VO2 (-39 +/- 4% and -37 +/- 5%, P < 0.01), and efficiency (-15 +/- 4% and -17 +/- 2%, P < 0.05). Despite decreased efficiency, ETA and ETA/ETB blockade decreased total VO2 (-24 +/- 3% and -22 +/- 2%, P < 0.05). Na+/H+ exchanger inhibition decreased Emax and E-C coupling VO2 similar to ETA and ETA/ETB blockade, but did not alter efficiency. In HF, endogenous ET-1 maintains contractility at expense of increased VO2 through ETA receptor activation, likely mediated by Na+/H+ exchange.  相似文献   

19.
G protein-coupled receptors (GPCRs), including endothelin receptor A (ETA) and B (ETB), may form dimers or higher-order oligomers that profoundly influence signaling. Here we examined a PDZ finger motif within the C-terminus of ETA and its role in heterodimerization with ETB, and in homodimerization with itself, when expressed in HEK293 cells. Receptor dimerization was monitored by (i) fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) (FRET donor) and tetracysteine/FlAsH (FRET acceptor) fused to the C-termini of ET receptors, and (ii) coimmunoprecipitation of ET receptors after mild detergent solubilization. Mutations in a PDZ finger motif at threonine403/serine404 eliminated FRET and reduced coimmunoprecipitation of heterodimers and homodimers. Functional consequences were evaluated by measuring mobilization of intracellular Ca2+ and internalization of receptors in response to a 10 nmol/L ET-1 challenge. PDZ mutations converted a sustained Ca2+ signal mediated by ETA:ETB heterodimers into a transient response, similar to that observed for homodimers or monomers. Heterodimers containing PDZ mutations were seen to internalize in a similar time domain (approximately 5 min) to the transient Ca2+ elevation and with similar kinetics to internalization of ETA homodimers or monomers. Without the PDZ mutations, heterodimers did not internalize over 15 min, suggesting the intriguing possibility that sustained Ca2+ signaling was a consequence (at least in part) of delayed internalization. The results are consistent with structural models of ETA-receptor dimerization that place threonine403/serine404 of the PDZ finger motif at the interaction interface between heterodimers and homodimers. Sustained Ca2+ signaling and delayed endocytosis of ETA:ETB heterodimers argues strongly for a unique dimer interface that impacts transmembrane signaling and internalization.  相似文献   

20.
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na(+) regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na(+) intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na(+) regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na(+) feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na(+) retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号