首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased production and deposition of the 40-42-amino acid beta-amyloid peptide (Abeta) is believed to be central to the pathogenesis of Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP), but the mechanisms that regulate APP processing to produce Abeta are not fully understood. X11alpha (also known as munc-18-interacting protein-1 (Mint1)) is a neuronal adaptor protein that binds APP and modulates APP processing in transfected non-neuronal cells. To investigate the in vivo effect of X11alpha on Abeta production in the brain, we created transgenic mice that overexpress X11alpha and crossed these with transgenics harboring a familial Alzheimer's disease mutant APP that produces increased levels of Abeta (APPswe Tg2576 mice). Analyses of Abeta levels in the offspring generated from two separate X11alpha founder mice revealed a significant, approximate 20% decrease in Abeta(1-40) in double transgenic mice expressing APPswe/X11alpha compared with APPswe mice. At a key time point in Abeta plaque deposition (8 months old), the number of Abeta plaques was also deceased in APPswe/X11alpha mice. Thus, we report here the first demonstration that X11alpha inhibits Abeta production and deposition in vivo in the brain.  相似文献   

2.
beta-site APP cleaving enzyme 1 (BACE1) is the beta-secretase enzyme required for generating pathogenic beta-amyloid (Abeta) peptides in Alzheimer's disease (AD). BACE1 knockout mice lack Abeta and are phenotypically normal, suggesting that therapeutic inhibition of BACE1 may be free of mechanism-based side effects. However, direct evidence that BACE1 inhibition would improve cognition is lacking. Here we show that BACE1 null mice engineered to overexpress human APP (BACE1(-/-).Tg2576(+)) are rescued from Abeta-dependent hippocampal memory deficits. Moreover, impaired hippocampal cholinergic regulation of neuronal excitability found in the Tg2576 AD model is ameliorated in BACE1(-/-).Tg2576(+) bigenic mice. The behavioral and electrophysiological rescue of deficits in BACE1(-/-).Tg2576(+) mice is correlated with a dramatic reduction of cerebral Abeta40 and Abeta42 levels and occurs before amyloid deposition in Tg2576 mice. Our gene-based approach demonstrates that lower Abeta levels are beneficial for AD-associated memory impairments, validating BACE1 as a therapeutic target for AD.  相似文献   

3.
Both active and passive immunization to eliminate amyloid plaques from the brain of patients with Alzheimer's disease (AD) have confirmed that amyloid beta (Abeta) vaccination does not only result in clearance of Abeta plaques but improves behavioral-cognitive deficits in animal models of AD. In the present study, the levels of naturally occurring serum antibodies against Abeta were measured in Tg2576 mice at various ages using ELISA to determine the relationship between aging and the level of anti-Abeta autoantibody. The level of anti-Abeta antibody fell significantly at the age of 9 months, at the age when amyloid plaques started to appear in the brain of Tg2576 mice, and was persistently low thereafter. However, serum immunoglobulin (Ig) level was elevated in older transgenic mice compared with younger transgenic mice suggesting that the reduced level of anti-Abeta autoantibody was not merely due to deterioration of the immune response in aged Tg2576 mice.  相似文献   

4.
Previous studies have shown that a minor glycoform of acetylcholinesterase (AChE) is increased in Alzheimer's disease brain and cerebrospinal fluid. This glycoform can be distinguished from other AChE species by its lack of binding to concanavalin A (Con A). In this study, the temporal relationship between AChE glycosylation and Abeta deposition was examined in Tg2576 mice. There was a significant (p < 0.05) difference in AChE glycosylation in Tg2576 mice compared with age-matched background strain control mice at 4 months of age. This difference in glycosylation was also observed in 8- and 12-month-old Tg2576 mice. In contrast, Abeta plaques were only seen in the Tg2576 mice at 12 months of age, and were not detected at 4 and 8 months of age. Soluble human-sequence Abeta was detected as early as 4 months of age in the transgenic mice. The altered AChE glycosylation was due to an increase in a minor AChE isoform, which did not bind Con A, similar to that previously observed to be increased in Alzheimer's disease brain and cerebrospinal fluid. The results demonstrate that in transgenic mice altered AChE glycosylation is associated with very early events in the development of AD-like pathology. The study supports the possibility that glycosylation may also be a useful biomarker of AD.  相似文献   

5.
Increased expression and altered processing of the amyloid precursor protein (APP) and generation of beta-amyloid peptides is important in the pathogenesis of amyloid plaques in Alzheimer's disease (AD). Transgenic Tg2576 mice overexpressing the Swedish mutation of human APP exhibit beta-amyloid deposition in the neocortex and limbic areas, accompanied by gliosis and dystrophic neurites. However, murine plaques appear to be less cross-linked and the mice show a lower degree of inflammation and neurodegeneration than AD patients. 'Advanced glycation endproducts (AGEs)', formed by reaction of proteins with reactive sugars or dicarbonyl compounds, are able to cross-link proteins and to activate glial cells, and are thus contributing to plaque stability and plaque-induced inflammation in AD. In this study, we analyze the tissue distribution of AGEs and the pro-inflammatory cytokines IL-1beta and TNF-alpha in 24-month-old Tg2576 mice, and compare the AGE distribution in these mice with a younger age group (13 months old) and a typical Alzheimer's disease patient. Around 70% of the amyloid plaque cores in the 24-month-old mice are devoid of AGEs, which might explain their solubility in physiological buffers. Plaque associated glia, which express IL-1beta and TNF-alpha, contain a significant amount of AGEs, suggesting that plaques, i.e. Abeta as its major component, can induce intracellular AGE formation and the expression of the cytokines on its own. In the 13-month-old transgenic mice, AGEs staining can neither be detected in plaques nor in glial cells. In contrast, AGEs are present in high amounts in both plaques and glia in the human AD patient. The data obtained in this show interesting differences between the transgenic mouse model and AD patients, which should be considered using the transgenic approach to test therapeutical strategies to eliminate plaques or to attenuate the inflammatory response in AD.  相似文献   

6.
Accumulation of cerebral amyloid beta-protein (Abeta) is believed to be part of the pathogenic process in Alzheimer's disease. Abeta is derived by proteolytic cleavage from a precursor protein, the amyloid precursor protein (APP). APP is a type-1 membrane-spanning protein, and its carboxyl-terminal intracellular domain binds to X11beta, a neuronal adaptor protein. X11beta has been shown to inhibit the production of Abeta in transfected non-neuronal cells in culture. However, whether this is also the case in vivo in the brain and whether X11beta can also inhibit the deposition of Abeta as amyloid plaques is not known. Here we show that transgenic overexpression of X11beta in neurons leads to a decrease in cerebral Abeta levels in transgenic APPswe Tg2576 mice that are a model of the amyloid pathology of Alzheimer's disease. Moreover, overexpression of X11beta retards amyloid plaque formation in these APPswe mice. Our findings suggest that modulation of X11beta function may represent a novel therapeutic approach for preventing the amyloid pathology of Alzheimer's disease.  相似文献   

7.
We have previously reported structure-based design of memapsin 2 (beta-secretase) inhibitors with high potency. Here we show that two such inhibitors covalently linked to a "carrier peptide" penetrated the plasma membrane in cultured cells and inhibited the production of beta-amyloid (Abeta). Intraperitoneal injection of the conjugated inhibitors in transgenic Alzheimer's mice (Tg2576) resulted in a significant decrease of Abeta level in the plasma and brain. These observations verified that memapsin 2 is a therapeutic target for Abeta reduction and also establish that transgenic mice are suitable in vivo models for the study of memapsin 2 inhibition.  相似文献   

8.
Parenteral immunization of transgenic mouse models of Alzheimer disease (AD) with synthetic amyloid beta-peptide (Abeta) prevented or reduced Abeta deposits and attenuated their memory and learning deficits. A clinical trial of immunization with synthetic Abeta, however, was halted due to brain inflammation, presumably induced by a toxic Abeta, T-cell- and/or Fc-mediated immune response. Another issue relating to such immunizations is that some AD patients may not be able to raise an adequate immune response to Abeta vaccination due to immunological tolerance or age-associated decline. Because peripheral administration of antibodies against Abeta also induced clearance of amyloid plaques in the model mice, injection of humanized Abeta antibodies has been proposed as a possible therapy for AD. By screening a human single-chain antibody (scFv) library for Abeta immunoreactivity, we have isolated a scFv that specifically reacts with oligomeric Abeta as well as amyloid plaques in the brain. The scFv inhibited Abeta amyloid fibril formation and Abeta-mediated cytotoxicity in vitro. We have tested the efficacy of the human scFv in a mouse model of AD (Tg2576 mice). Relative to control mice, injections of the scFv into the brain of Tg2576 mice reduced Abeta deposits. Because scFvs lack the Fc portion of the immunoglobulin molecule, human scFvs against Abeta may be useful to treat AD patients without eliciting brain inflammation.  相似文献   

9.
Alzheimer's disease (AD) involves amyloid beta (Abeta) accumulation, oxidative damage, and inflammation, and risk is reduced with increased antioxidant and anti-inflammatory consumption. The phenolic yellow curry pigment curcumin has potent anti-inflammatory and antioxidant activities and can suppress oxidative damage, inflammation, cognitive deficits, and amyloid accumulation. Since the molecular structure of curcumin suggested potential Abeta binding, we investigated whether its efficacy in AD models could be explained by effects on Abeta aggregation. Under aggregating conditions in vitro, curcumin inhibited aggregation (IC(50) = 0.8 microM) as well as disaggregated fibrillar Abeta40 (IC(50) = 1 microM), indicating favorable stoichiometry for inhibition. Curcumin was a better Abeta40 aggregation inhibitor than ibuprofen and naproxen, and prevented Abeta42 oligomer formation and toxicity between 0.1 and 1.0 microM. Under EM, curcumin decreased dose dependently Abeta fibril formation beginning with 0.125 microM. The effects of curcumin did not depend on Abeta sequence but on fibril-related conformation. AD and Tg2576 mice brain sections incubated with curcumin revealed preferential labeling of amyloid plaques. In vivo studies showed that curcumin injected peripherally into aged Tg mice crossed the blood-brain barrier and bound plaques. When fed to aged Tg2576 mice with advanced amyloid accumulation, curcumin labeled plaques and reduced amyloid levels and plaque burden. Hence, curcumin directly binds small beta-amyloid species to block aggregation and fibril formation in vitro and in vivo. These data suggest that low dose curcumin effectively disaggregates Abeta as well as prevents fibril and oligomer formation, supporting the rationale for curcumin use in clinical trials preventing or treating AD.  相似文献   

10.
11.
Alzheimer's disease neuropathology is characterised by beta-amyloid plaques and neurofibrillary tangles. Inhibition of beta-amyloid accumulation may be essential for effective therapy in Alzheimer's disease. In this study we have treated transgenic mice carrying the Swedish mutation of human amyloid precursor protein [Tg(Hu.APP695.K670N-M671L)2576], which develop brain beta-amyloid deposits, with nicotine in drinking fluid (200 microg/mL) from 9-14.5 months of age (5.5 months). A significant reduction in amyloid beta peptide 1-42 positive plaques by more than 80% (p < 0.03) was observed in the brains of nicotine treated compared to sucrose treated transgenic mice. In addition, there was a selective reduction in extractable amyloid beta peptides in nicotine treated mice; cortical insoluble 1-40 and 1-42 peptide levels were lower by 48 and 60%, respectively (p < 0.005), whilst there was no significant change in soluble 1-40 or 1-42 levels. The expression of glial fibrillary acidic protein was not affected by nicotine treatment. These results indicate that nicotine may effectively reduce amyloid beta peptide aggregation in brain and that nicotinic drug treatment may be a novel protective therapy in Alzheimer's disease.  相似文献   

12.
Shin SJ  Lee SE  Boo JH  Kim M  Yoon YD  Kim SI  Mook-Jung I 《Proteomics》2004,4(11):3359-3368
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is characterized by the extracellular deposition of beta-amyloid and intracellular hyperphosphorylation of tau in the cortex and hippocampus of the brain. These characterizations are caused by abnormal expression, modification and deposition of certain proteins. Post-translational modifications of proteins including oxidation and nitration might be involved in the pathogenesis of AD. In this study, AD-related proteins were identified in the cortex of Tg2576 mice used as a model for studying AD. Tg2576 mice express high levels of the Swedish mutated form of human beta-amyloid precursor protein (APP) and generated high levels of beta-amyloid in the brains. Using Western blotting and two-dimensional electrophoresis, proteins with differences in expression, oxidation and nitration in the cortex of Tg2576 mice brains were compared to littermate mice brains used as a control. The proteins with different expression levels were identified using matrix-assisted laser desorption/ionization-time of flight and liquid chromatography-tandem mass spectrometry analyses. As a result, 12 proteins were identified among 37 different proteins using the PDQuest program. Furthermore, two proteins, laminin receptor and alpha-enolase, were more susceptible to oxidative modification in the brains of Tg2576 mice compared to those of littermates. Similarly, alpha-enolase, calpain 12, and Atp5b were more modified by nitration in brains of Tg2576 mice than those of littermates. Taken together, these proteins and their modifications may play an important role in the plaque deposition of Tg2576 mice brains.  相似文献   

13.
The amyloid (Abeta) peptides generated in Hsiao's APP Tg2576 transgenic (Tg) mice are physically and chemically distinct from those characteristic of Alzheimer's disease (AD). Transgenic mouse Abeta peptides were purified using sequential size-exclusion and reverse-phase chromatographic systems and subjected to amino acid sequencing and mass spectrometry analyses. The mouse Abeta peptides lacked the extensive N-terminal degradations, posttranslational modifications, and cross-linkages abundant in the stable Abeta peptide deposits observed in AD. Truncated Abeta molecules appear to be generated in vivo by hydrolysis at multiple sites rather than by post-mortem C-terminal degradation. In contrast to AD amyloid cores, the Tg mice peptides were soluble in Tris-SDS-EDTA solutions, revealing both monomeric and SDS-stable oligomeric species of Abeta. In contrast to our report on Novartis Pharma APP23 Tg mice [Kuo et al. (2001) J. Biol. Chem. 276, 12991], which maintain high levels of soluble Abeta early on with later development of extensive vascular amyloid, Tg2576 mice exhibited an age-related elevation of soluble Abeta with relatively limited vascular amyloid deposition. The transgenic mouse levels of carboxy-terminal (CT) APP fragments were nearly 10-fold greater than those of human brains, and this condition may contribute to the unique pathology observed in these animals. Immunization of transgenic mice may act to prevent the pathological effects of betaAPP overproduction by binding CT molecules or halting their processing to toxic forms, in addition to having any effects on Abeta itself. Thus, differences in disease evolution and biochemistry must be considered when using transgenic animals to evaluate drugs or therapeutic interventions intended to reduce the Abeta burden in Alzheimer's disease.  相似文献   

14.
Considerable circumstantial evidence suggests that Abeta42 is the initiating molecule in Alzheimer's disease (AD) pathogenesis. However, the absolute requirement for Abeta42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Abeta1-40 or Abeta1-42 in the absence of human amyloid beta protein precursor (APP) overexpression. Mice expressing high levels of Abeta1-40 do not develop overt amyloid pathology. In contrast, mice expressing lower levels of Abeta1-42 accumulate insoluble Abeta1-42 and develop compact amyloid plaques, congophilic amyloid angiopathy (CAA), and diffuse Abeta deposits. When mice expressing Abeta1-42 are crossed with mutant APP (Tg2576) mice, there is also a massive increase in amyloid deposition. These data establish that Abeta1-42 is essential for amyloid deposition in the parenchyma and also in vessels.  相似文献   

15.
Lee EB  Leng LZ  Lee VM  Trojanowski JQ 《FEBS letters》2005,579(12):2564-2568
Immunization against the Abeta peptide reverses the pathologic and behavioral manifestations of Alzheimer's disease in murine models. Since active immunization is associated with an autoimmune meningoencephalitis in a subset of humans, passive transfer of anti-Abeta immunoglobulin is being pursued as a potentially safer alternative. We have identified cases of meningoencephalitis subsequent to peripheral and intracerebral passive immunization of Tg2576 mice. The vasocentric mononuclear infiltrate localized only to brain regions affected by Abeta amyloid deposits suggesting that the inflammatory reaction was Abeta specific. This report indicates that current passive immunization in humans should proceed with careful regard for autoimmune complications.  相似文献   

16.
Amyloidogenic processing of beta-amyloid precursor protein (APP) leading to Abeta accumulation is critical in Alzheimer's disease (AD). Abeta leads to pre-synaptic molecular changes in hippocampus of the AD mutant transgenic mouse model Tg2576 prior to plaque formation. Since NGF is critical to neuronal growth and is involved in regulating APP processing, we tested the hypothesis that NGF expression is altered early in this model of AD. We measured APP products and mRNAs for NGF and its low-affinity receptor p75 in 10-month-old Tg2576 whole brain after dietary propentofylline (PPF) or acetyl-L-carnitine (ALCAR) for 4 weeks to induce NGF- or p75-expression, respectively. The results (all P<0.0002) show that compared to wild-type or littermate controls, the transgene leads to decreases of 44% in NGF-mRNA, 25% in p75-mRNA, 64% in sAPPalpha, and 21-fold increases in Abeta40/42. PPF increased NGF-mRNA by 20% and sAPPalpha by 42% while decreasing Abeta40/42 by 45/48%, with no effect on p75-mRNA in Tg animals. ALCAR increased p75-mRNA by 16% and decreased Abeta40/42 by 46/26% with no significant effect on sAPPalpha or NGF-mRNA in Tg animals. The results indicate that NGF expression is reduced early in the Tg brain, that this reduction potentiates further Abeta formation in a vicious cycle, and that inducing NGF shifts the balance toward secretory processing of APP. To a lesser extent, p75 decreases Abeta peptides, possibly via peptidases since sAPPalpha level is not changed.  相似文献   

17.
The possibility of detecting progressive changes in cognitive function reflecting the spatio-temporal pattern of beta-amyloid peptide (Abeta) deposition was investigated in Tg2576 mice overexpressing the human mutant amyloid precursor protein (hAPP). Here, we show that at 7 months of age, Tg2576 mice exhibited a selective deficit in hippocampus-based operations including a defective habituation of object exploration, a lack of reactivity to spatial novelty and a disruption of allothetic orientation in a cross-shaped maze. At 14 months of age, Tg2576 mice displayed a more extended pattern of behavioral abnormalities, because they failed to react to object novelty and exclusively relied on motor-based orientation in the cross-shaped maze. However, an impaired reactivity to spatial and object novelty possibly reflecting age-related attention deficits also emerged in aged wild-type mice. These findings further underline that early cognitive markers of AD can be detected in Tg2576 mice before Abeta deposition occurs and suggest that as in humans, cognitive deterioration progressively evolves from an initial hippocampal syndrome to global dementia because of the combined effect of the neuropathology and aging.  相似文献   

18.
Constitutive and PKC-regulated alpha-secretase pathways have been reported to produce the secreted form of alpha-secretase-derived APP (sAPPalpha). Here, we examined putative role of furin in the regulation of alpha-secretase activity in vitro and in vivo. Overexpression of the prodomain of furin and infection with a furin-specific inhibitor significantly reduced the levels of sAPPalpha regardless of PKC activity, whereas total APP levels remained unchanged. Furin mRNA levels in the brains of AD patients and Tg2576 mice were significantly lower than those in controls, whereas ADAM10 and TACE mRNA levels were much alike between Tg2576 and littermate mice. Moreover, the injection of furin-adenovirus into Tg2576 mouse brains markedly increased alpha-secretase activity and reduced beta-amyloid protein (Abeta) production in infected brain regions. Our results suggest that furin enhances alpha-secretase activity via the cleavage of ADAM10 and TACE, and that attenuated furin activity is connected to the production of Abeta.  相似文献   

19.
A growing body of evidence suggests a relationship between oxidative stress and beta-amyloid (Abeta) peptide accumulation, a hallmark in the pathogenesis of Alzheimer's disease (AD). However, a direct causal relationship between oxidative stress and Abeta pathology has not been established in vivo. Therefore, we crossed mice with a knockout of one allele of manganese superoxide dismutase (MnSOD), a critical antioxidant enzyme, with Tg19959 mice, which overexpress a doubly mutated human beta-amyloid precursor protein (APP). Partial deficiency of MnSOD, which is well established to cause elevated oxidative stress, significantly increased brain Abeta levels and Abeta plaque burden in Tg19959 mice. These results indicate that oxidative stress can promote the pathogenesis of AD and further support the feasibility of antioxidant approaches for AD therapy.  相似文献   

20.
This study aims to discuss the effect of preventing pathological changes and cognitive degeneration of Tg2576 mice by inoculating the subunit fragment of Aβ vaccine. Thirty-two Tg2576 mice were randomly divided into four groups, each having eight mice: Group I, the control group, inoculated with adjuvants; Group II, the Aβ42 group, inoculated with Aβ42 vaccine; Group III, the Aβ1―15 group, inoculated with Aβ1―15 vaccine; and Group IV, the Aβ36―42 group, inoculated with Aβ36―42 vaccine. The titer of the serum anti-body against Aβ42 (Group II) was significantly higher than that of the control group (Group I), and a low level of antibodies could be detected in the brain homogenate in the three vaccine-inoculated groups. Morris water maze test showed that the Aβ42 group, Aβ1―15 group and Aβ36―42 group were obviously im-proved compared with the control group. The cultured splenocytes sampled from each group were induced by Con A or their respective antigens, and the cell proliferation of the three vaccine-inoculated groups was significantly higher than that of the control group. In the Aβ42 group, IL2 and IFN-γ were relatively low and IL4 and IL10 were relatively high. By contrast, IL4 and IL10 were much higher in the Aβ1―15 group and IL2 and IFN-γ were much higher in the Aβ36―42 group. The immunohistochemical test showed a large number of senile plaques in the brain cortex and hippocampus of the mice in the con-trol group, no senile plaque in the brain of the Aβ1―15 group and Aβ42 group mice, and a small number of senile plaques in the brain of the Aβ36―42 group mice. The results suggest that the subunit fragment of Aβ1―15 vaccine could prevent not only cognitive and behavioral degeneration but also Aβ deposition and formation of senile plaques in Tg2576 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号