首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 134 bird species were recorded at Jianfengling, Hainan Island, in China from May 2000 to September 2004, of which 44 participated in one or more of 134 mixed‐species flocks. These flocks averaged 3.8 ± 0.2 species and 20.3 ± 1.2 individuals. Flocking propensity in a given species ranged from 1.5 to 100%. For flocking species, frequency of flocking and number of individuals in flocks was positively correlated with frequency and number in point counts. Among all species pairs with flocking frequency above 5%, cluster and correlation analysis indicated there were two principal groups of flocking birds – canopy species and understorey species: associations were positive within a group, but negative between groups. Canopy birds had a higher flocking propensity than understorey birds. They also made significantly less use of inner branches and trunks and greater use of middle branches, and foraged at a significantly greater height when in mixed‐species flocks than when solitary. For understorey bird species, there were no significant differences in foraging locations between solitary and mixed‐species flocks. Higher flocking frequency occurred in the wet season for canopy birds, but in the dry season for understorey birds. Overall patterns were consistent with the explanation that flocking enables an expansion of foraging niche by reducing the risk of predation.  相似文献   

2.
Flocking behaviour in birds reflects the outcome of a momentary trade-off between increased foraging efficiency and improved predator avoidance. However, these changing patterns remain poorly known at any spatial or temporal scale. The aim of the present study was first to investigate seasonal fluctuations of flocking behaviour throughout the entire distribution range of a species and secondly to explore behavioural responses to daily temperature variations. From 2000 to 2010, sightings of Peruvian Thick-knees (Burhinus superciliaris) were collected throughout Ecuador, Peru and Chile. There were strong differences in flocking behaviour between Chilean and Peruvian populations. While Thick-knees occurred into few large year-round flocks in Chile, flock occurrence was highly seasonal in Peru, where group size grew gradually from loose flocks at the end of the breeding season to a few large ones by the middle of the year. Time of day seemed not to affect the species detectability but was negatively related to flock size. Variations in the flocking behaviour of Peruvian Thick-knees throughout its distribution range suggest that aggregation patterns might indicate individuals responding to seasonally fluctuating ecological pressures, such as those derived from predation, foraging or climate.  相似文献   

3.
A mixed‐species bird flock is a social assemblage where two or more bird species are moving together while foraging and might benefit from increased foraging efficiency and antipredator vigilance. A “mega‐flock,” which includes flocking species from different vegetation strata, often exhibits high species diversity. Mechanisms for the formation of mega‐flocks have not yet been explored. In this study, we evaluated the influence of vegetation structure and bird species diversity in driving the occurrence of mega‐flocks. We investigated the composition of mixed‐species flocks, local bird communities, and vegetation structure in five vegetation types of two high‐elevation sites in central Taiwan. Mega‐flocks occurred more frequently in pine woodland than later successional stages of coniferous forests. However, species richness/diversity of local bird communities increased along successional stages. Therefore, vegetation variables exhibit more influence on the occurrence of mega‐flocks than local bird communities. Besides foliage height diversity, understory coverage also showed positive effects on flock size of mixed‐species flocks. Our results indicated that pine woodlands with more evenly distributed vegetation layers could facilitate the interactions of canopy and understory flocks and increase the formation of mega‐flocks and thus the complexity of mixed‐species flocks.  相似文献   

4.
We developed sampling methods to characterize the participation of bird species in foraging flocks led by the Eastern Tufted Titmouse (Baeolophus bicolor) in North-central Florida during winter, because standard field methods, developed primarily for permanent resident Neotropical flocks, were intractable in our system. During January–February 2004 and November 2004–March 2005, we observed 55 mixed-species flocks, recorded 40 potential flocking species [mean of 12.4 species (SD = 3.8; range 3–20), 26.3 individuals (SD = 12.2; range 8–60), and 3.1 titmice (SD = 1.4; range 1–7), per flock]. Twenty-six species were observed frequently enough (>10% of observations) to be included in analyses. We paired 60-min flock observations with 10-min point counts conducted in locations used by flocks, but after flocks had moved more than 100 m away. This method yielded a measure of flocking propensity: the ratio of the number of individuals observed in the flock versus during the point count for each species. We used regression tree (RT) analysis to classify species into groupings according to their levels of flock participation, and to investigate relationships between flocking propensity and various environmental and social factors that we measured. Our analysis identified three clear species groups; “Nuclear/Regular Associate” (12 spp.; high/moderate), “Occasional Associate” (four spp.; moderate/low), and “Non-joiner/Accidental” (ten spp.; low/no flocking propensity). Groupings were similar to schemes produced via more time-intensive field methods. In order to contextualize grouping categories, we conducted a review of flocking group definitions and relevant autecological information (e.g., interspecific sociality) about our study species. We found this method to be useful for geographically extensive sampling of species’ participation in mixed-species flocks, despite high inter-flock variability in species composition and limited labor.  相似文献   

5.
Flocking bird species tolerate an approaching human up to a certain distance. We measured this distance, i.e., flight distance, to an approaching small boat for 11 waterfowl species. The flight distances correlated positively with flock size and species diversity (Shannon index H′) in species that showed relatively short flight distances when they were in a single-species flock. However, we did not observe such a correlation for single-species flocks that showed relatively long flight distances. Only pochards (Aythya ferina), a species with large individual variation in flight distances, showed a positive correlation between flight distance and flock size in both single- and multispecies flocks. Flight distance seemed to be affected by usage of the water area: flight distances tended to be longer for waterfowl species that use a water area for foraging than for those that use it primarily for resting. Thus, the behavior of actively foraging species may be more affected by human disturbances than that of resting species. Received: March 10, 2001 / Accepted: May 22, 2001  相似文献   

6.
In the Joetsu region of central Honshu, Japan, snow lies on the ground 2–3 m deep from January to February every year. To test the effects of snow cover on the social and foraging behaviors of the great tit (Parus major Linnaeus) in the region, the following parameters were compared between the pre-snowy period (November and December) and the snowy period (January and February) at the individual level: population size, monospecific flock size and the stability of its membership, home range size, attendance rate with mixed-species flocks, and foraging height. Great tits lived alone or in pairs, but often joined mixed-species flocks. Throughout the study period, individuals exhibited strong site fidelity, which resulted in a stable population size. Neither the size of a monospecific flock nor its membership was affected by snow cover. The home range expanded when birds joined mixed-species flocks during both periods. Birds more frequently joined mixed-species flocks during the snowy period, and the size of mixed-species flocks was significantly larger than during the pre-snowy period. During the snowy period, birds shifted their foraging position from the ground to the upper parts of trees. They also used the upper parts of trees when they joined mixed-species flocks. These results suggest that the intraspecific sociality of great tits is relatively insensitive to snow cover, but that the home range size and foraging positions are affected by joining mixed-species flocks, rather than by snow cover.  相似文献   

7.
This study investigated the costs and benefits of flocking in white-fronted geese Anser albifrons foraging on rice grains in Japan. The time budgets of focal geese were recorded, and the effects of flock size on the proportions of time spent in vigilant and agonistic behaviour were tested. The results showed that the decline in vigilance level and consequent increase in foraging time were beneficial results of flocking whereas agonistic interactions, a potential cost of flocking, did not increase with increasing flock size. However, seasonal variation in flock size suggested that exploitative competition could be a cost of flocking; the sizes of flocks in spring, when resource depletion had progressed, were significantly reduced compared with those in autumn. An experimental increase in rice density resulted in a significant increase in flock size. We conclude that the flock size of foraging white-fronted geese is a result of compromise between a constant benefit of flocking (i.e. decline in vigilance level) and a cost of flocking varying with food abundance (i.e. exploitative competition).  相似文献   

8.
As forests undergo natural succession following artificial afforestation, their bird assemblages also change. However, interspecific avian social organization associated with forest succession has not been fully understood, particularly for mixed-species bird flocks. To disentangle how mixed-species flocks change as a function of local forest structure, we analyzed flock characteristics (particularly species richness, flocking frequency and propensity) and vegetation physiognomies along a presumed successional series (early, middle, and advanced) simultaneously in subtropical forests in southern China. As hypothesized, monthly point counts demonstrated that complexity of flocks increases with the progression of natural forest succession at a local scale. Advanced forests differed significantly from pioneering plantations with respect to vegetation structure, flock characteristics and constituents (especially for understory specialists). Importantly, forest succession affected flock patterns particularly in relation to the flocking propensity of regular species, and the frequency of nuclear species (Huet’s fulvetta Alcippe hueti), which in turn determined flocking occurrence at different successional stands. Canonical correspondence analysis indicated that understory flocking species (mainly Timaliidae babblers) were significantly associated with intact native canopy cover, complex DBH diversity, as well as high densities of dead trees and large trees, representing a maturity level of successional stands. Our study reveals that the effect of natural forest succession on mixed-species bird flocks is species-specific and guild-dependent. From a conservation perspective, despite a high proliferation of pine plantation in southern China, priority should be placed on protecting the advanced forest with a rich collection of understory flocking specialists.  相似文献   

9.
According to both the predation avoidance and foraging efficiency hypotheses, birds within mixed flocks increase their foraging efficiency and/or can spend more time feeding and less time looking out for predators. These hypotheses predict that birds in mixed flocks obtain benefits. Thus, mixed flock formation could serve as a strategy to cope with difficult conditions imposed on birds such as climatic conditions that ultimately result in a change in predation pressure or food resources. We evaluate the hypotheses that forming part of a flock confers benefits to its members and the associated prediction that birds will take advantage of these benefits and flock more often under cold and dry weather conditions between and within seasons to cope with such conditions. We surveyed the presence of mixed flocks, flocking propensity, number of species and individuals in mixed flocks in the Subtropical Yungas foothill of Argentina, to examine seasonality, flocking behavior of birds and their responses to two climatic variables: temperature and humidity. Bird species presented a higher flocking propensity and mixed flocks occurred more frequently during the dry and cold seasons than during the more benign seasons, and lower values of temperature within seasons triggered the flocking behavior. Although effects between seasons were expected, birds also showed a short‐term response to small changes in temperature within seasons. These results strengthen the ideas proposed by the foraging hypothesis. Although benefits derived from flocking have yet to be determined, whatever they are should be understood in the context of seasonal variation in life‐history traits.  相似文献   

10.
A. Rolando    P. Laiolo    M. Formica 《Journal of Zoology》1997,242(2):299-308
We studied the flocking and foraging behaviour of the chough Pyrrhocorax pyrrhocorax and the Alpine chough P. gruculus coexisting in the south-western Italian Alps in order to evaluate the costs and benefits of foraging in single- and mixed-species flocks.
In the single-species context, flock size significantly affected the foraging behaviour of the Alpine chough; in larger flocks, the birds stayed for a shorter time in a patch and fed more quickly than in smaller flocks. Flock size did not significantly affect the foraging behaviour of the chough, probably because of the small number of individuals per flock.
The propensity for mixed-species flocking was rather low. The observed frequencies of single-species flocks of choughs and Alpine choughs were significantly higher than those expected on the basis of random flocking, whereas the observed frequencies of mixed-species flocks of the two species were lower than those expected. The stay times became significantly shorter for the chough in the presence of the Alpine chough. Moreover, feeding rates of the Alpine chough were significantly lower in the presence of the dominant chough.
The present study does not confirm the hypothetical foraging advantages of flocking. In single-species flocks, the benefits for the Alpine chough (higher feeding rates in larger flocks) were roughly compensated by the costs (shorter stay times in larger flocks), whereas the chough apparently neither gained benefits nor endured costs.
In mixed-species flocks, the Alpine chough sustained costs due to a reduction of feeding rates and the chough suffered costs due to a reduction of stay times. Hence, on average, single-species flocking gives no evident foraging advantages to either the chough or the Alpine chough, whereas mixed-species flocking provides some disadvantages for both species.  相似文献   

11.
《Ostrich》2013,84(3):259-264
Mixed-species foraging flocks were studied at Kichwa Tembo Camp on the edge of the Masai Mara National Reserve in Kenya between July and September 2004. Observations were made on 29 mixed-species flocks, in which 24 species participated. African Paradise-Flycatcher Terpsiphone viridis, Black-backed Puffback Dryoscopus cubla, Grey-backed Camaroptera Camaroptera brachyura, Collared Sunbird Hedydipna collars and Cabanis's Greenbul Phyllastrephus cabanisi were the most common participants in mixed-species flocks, as well as among the most frequently encountered bird species overall. The Black-backed Puffback was identified as the nuclear species in flocks due to their abundance and frequency with which they were followed by other species. Mixed-species flocks represent another niche dimension in this diverse bird community, but few of these species could be described as flock specialists; most of the birds observed in mixed-species flocks in this study were opportunistic attendant species, including the African Pygmy-Kingfisher Ispidina picta, not previously described as joining mixed-species flocks.  相似文献   

12.
Thirty-two species were recorded in mixed-species bird flocks led by the Grey-cheeked Fulvetta Alcippe morrisonia in Fushan Experimental Forest, Taiwan. Flocks averaged (± se) 5.8 ± 0.2 species and 51.4 ± 2.7 birds. Most participants were resident species (86.3%), some were elevational migrants (12.6%) and a few were latitudinal migrants (1.1%). Flock size was determined primarily by the abundance of Grey-cheeked Fulvettas, the most abundant species (68.1%). Flocks moved at an average rate of 10.8 ± 0.7 m/min, with larger flocks moving faster than smaller flocks. In moving flocks, canopy species were usually near the front, while understorey species usually followed. Fulvettas gave higher-intensity alarm calls and dived down more frequently in response to avian threats, especially raptors, than to non-avian threats. The overall foraging niche-breadth of the fulvetta was greater than that of any attendant species. Each species in a flock had a unique foraging niche. Most attendant species exhibited low foraging niche-overlap with the Grey-cheeked Fulvetta. Both the predator avoidance and the foraging efficiency hypotheses for mixed-species flocking were supported. The Grey-cheeked Fulvetta plays a critical role in the function of mixed-species flocks. A large flock formed around the Grey-cheeked Fulvetta provides attendant species with numerous opportunities for obtaining food and protection from predators.  相似文献   

13.
Zusammenfassung  In den Jahren 1994 bis 1998 wurden an der Unteren Mittelelbe Untersuchungen zum Aggregationsverhalten weidender Bläß- und Saatgänse durchgeführt. Mehr als 90% aller erfaßten Gänse hielten sich in Trupps auf, die aus mehr als 500 Vögeln bestanden. Eine verlängerte Freßzeit auf Kosten von Komfortverhalten und Ruhen belegte einen erhöhten Konkurrenzdruck mit zunehmender Truppgröße. Die Fluchtdistanzen kleiner Gänsegruppen war mit 60 bis 120 Metern geringer als bei größeren, doch nahmen sie bereits ab etwa 150 Vögeln bei einem Wert von ca. 200 Metern nicht weiter zu. Mit zunehmenden Bestandszahlen wuchs die Größe der Haupttrupps im Gebiet, zugleich erhöhte sich jedoch auch die Anzahl der Trupps.Eine mögliche Erklärung für die beobachtete Verteilung der Gänse auf die unterschiedlichen Truppgrößen besteht darin, daß ein großer Teil der Rastpopulation bei der Nahrungssuche opportunistisch vorgeht. Diese Gänse orientieren sich bei der Feldwahl an einigen wenigen, besonders erfolgreichen Art- bzw. Gattungsgenossen. Feldgröße und maximale Individuendichte waren wichtige Faktoren, welche die absoluten Truppgrößen auf den überwiegend aus Äckern bestehenden Nahrungsflächen begrenzten.
Flock sizes in foraging White-fronted and Bean Geese in the Elbe valley and their effects on flight distance and time budget
Summary  Flocking behaviour of foraging Whitefronted and Bean Geese (Anser albifrons, A. fabalis) was studied in the valley of the lower River Elbe from 1994 to 1998. Geese were counted every forthnight in the winter season of 1994/95 in a study area of 170 km2, and daily in 1995/96 and 1996/97 in an area of 40 km2. In the winter of 1997/98, counts were conducted every second day. Feeding behaviour was sampled by scan sampling in 1995/96, and distances of flight reactions to an approaching car were estimated in 1996/97 and 1997/98.Usually, geese formed large flocks. More than 90% of individuals recorded stayed in groups of more than 500 birds. In large flocks (several thousand geese), prolonged feeding times at the cost of preening and resting behaviour indicated a severe competition between individuals. Flight distances were lower in small flocks, but did not increase further with flocks becoming larger than 150 birds. As shown in earlier studies, the benefit of flocking in terms of predator avoidance is unlikely to increase any further with groups exceeding a few hundred birds.One possible explanation of the observed flocking behaviour could be that most individuals in the population follow an opportunistic strategy when foraging. They join their foraging cnspecifics instead of looking for feeding sites on their own. Flock size was limited by population size on the one hand, and by field size on the other. Average maximum density of individuals in a flock was 0,1 birds per square meter. Thus, bird density together with field size are likely to be the main factors determining and constraining flock size on agricultural fields.
  相似文献   

14.
Shade coffee has been identified as an important habitat for Nearctic‐Neotropical migrants during the non‐breeding season, including species of conservation concern such as Cerulean Warblers (Setophaga cerulea). To better understand habitat features important for migrants in shade coffee, we studied the foraging behavior of migrants in mixed‐species flocks at six shade‐coffee farms in the Cordillera de Merida, Venezuela, in 2008–2009 and the El Niño drought year of 2009–2010. We examined interspecific differences in foraging behavior and tree species selection of three foliage‐gleaning migrants, Blackburnian (Setophaga fusca), Cerulean, and Tennessee (Oreothlypis peregrina) warblers, and aerial‐foraging American Redstarts (Setophaga ruticilla). For morphologically similar Blackburnian and Cerulean warblers, we also examined factors influencing foraging rates (attack and movement rates), capture of large prey, and maneuver/substrate type. We found that aerial‐foraging American Redstarts foraged lower, used more aerial maneuvers, showed no tree species selection, and were less likely to forage in flocks than foliage‐gleaners. Although foraging rates were similar for Blackburnian and Cerulean warblers, the three foliage‐gleaners differed in foraging height and use of maneuvers. Cerulean Warblers foraged lower than the other two species, whereas Blackburnian Warblers used the greatest proportion of woody gleans. All three foliage‐gleaners selected Inga spp. (a commonly planted shade tree in shade‐coffee farms) for foraging, and Blackburnian and Cerulean warblers captured a greater proportion of large prey in Inga spp. than in other tree species. During the drought year, Blackburnian and Cerulean warblers captured half as many large prey and used a greater proportion of woody‐gleans. We found that interactions among behavioral, floristic, and environmental drivers influenced the foraging behavior of migrants wintering in shade coffee. Our results support those of previous studies suggesting that migrants partition resources behaviorally during the non‐breeding season, that foliage‐gleaners may benefit from the presence of shade trees, especially Inga spp., in agroforestry systems, and that drought may influence the foraging behavior of foliage‐gleaning migrants, presumably due to reduced prey availability.  相似文献   

15.
Social and ecological conditions can influence flock formation (e.g. number of flocks, flock size, etc.) depending on the degree of social attraction of a species. We studied group formation in brown‐headed cowbirds (Molothrus ater) over short time periods (30 min) in two semi‐natural experiments conducted under controlled conditions. First, we determined the shape of the relationship between intake rate and flock size by manipulating group size in a single enclosure. Second, we assessed the role of population size, food abundance, and predation risk, and their interactions, in flock size formation in a system of four enclosures (two with and two without food) connected to a central refuge patch. In the first experiment, we found that pecking rates peaked at intermediate flock sizes (three to six individuals), which was influenced by greater availability of foraging time and more aggressive interactions in large groups. In the second experiment, flock sizes in the patches with food increased with population size likely due to the benefits of patch exploitation in groups. Flock size decreased after predator attack probably because refuge availability reduced perceived predation risk more than flocking in larger groups. Food abundance had minor effects, varying flock sizes between the two patches with food, under high food availability conditions when population size was high, probably due to social cohesion effects. Our results suggest that: (1) this species has an inverted‐U food intake–group size relationship with a range of intake‐maximizing flock sizes rather than a single peak, (2) the presence of a near refuge modifies the expected benefits of group patch exploitation under high predation risk, and (3) an increase in population size would more likely be translated into rapid increases in the size of the flocks rather than in more new flocks.  相似文献   

16.
Relationships between predator avoidance behaviour (scanning and flocking) and foraging were studied in Calidris alpina, to test predictions regarding the effect of foraging techniques on such behaviours. The scanning hypothesis predicts that individuals with a tactile hunting technique and individuals with a visual hunting technique (both continuous searchers) do not differ in any variable related to scanning behaviour. The flocking hypothesis predicts that visually hunting individuals witl tend to form smaller flocks than tactile-foraging individuals. The two continuous feeding strategies did not differ among individuals in vigilance rate, nor in vigilance time or mean scan duration. However, with respect to flocking behaviour, visual foragers differed from tactile foragers in foraging flock size. The relationships between flocking behaviour and foraging strategy are discussed. The pattern found at the intraspecific level are the same as those found at interspecific level.  相似文献   

17.
Abstract: We examined the role of mixed‐species flocks for forest birds during their breeding and non‐breeding seasons in the use of savannas adjacent to forests in central Cerrado, Brazil. Transect surveys (n = 64) were conducted in eight savanna patches. Distances of birds from forests were estimated. Recorded birds were classified as members or not of mixed‐species flocks. About half of the bird species recorded in savannas were found in at least one mixed‐species flock. As distance from the forest increased, the number of species in mixed‐species flocks tended not to vary, while the number of species foraging alone or in mono‐specific groups decreased. Thus, for some forest species, participation in mixed‐species flocks allowed a greater use of more distant savannas. This tendency of being in mixed‐species flocks at greater distances from forests also can be interpreted as a reluctance to forage alone or in mono‐specific groups due to higher predation risk in less protective vegetation distant from cover. There was strong seasonal variation in the participation of bird species in mixed‐species flocks. There were significantly more species in mixed‐species flocks than out of these associations in the non‐breeding season, while differences in the breeding season were not significant. These patterns occurred, in part because mixed‐species flocks tended to be more frequent, to have more species and to forage at greater distances from forests during the early non‐breeding season than in other periods. This study suggests that the formation of mixed‐species flocks plays an important role in promoting the use of adjacent savannas by forest birds at forest/savanna boundaries in Cerrado. It also pointed out a novel advantage gained by birds with participation in mixed‐species flocks – greater use of adjacent vegetation patches.  相似文献   

18.
Abstract

Three aspects of mixed-species flocking of forest birds on Little Barrier Island were investigated. Whiteheads, fantails, parakeets, and grey warblers occurred more often in flocks than in “non-flocking” situations. Whiteheads were the main lead species, although parakeets formed groups within flocks and occasionally appeared to lead. Whitehead clumps defined the flock centre; only fantails were found commonly in the centre with whiteheads. Birds other than whiteheads generally orientated below or to the side of their nearest neighbours. We suggest that mixed-species flocking is a significant factor influencing the structure of forest bird communities in New Zealand during winter.  相似文献   

19.
Much of the remaining “forest” vegetation in eastern Chiapas, Mexico is managed for coffee production. In this region coffee is grown under either the canopy of natural forest or under a planted canopy dominated by Inga spp. Despite the large differences in diversity of dominant plant species, both planted and rustic shade coffee plantations support a high overall diversity of bird species; we recorded approximately 105 species in each plantation type on fixed radius point counts. We accumulated a combined species list of 180 species on repeatedly surveyed transects through both coffee plantation types. These values are exceeded regionally only by moist tropical forest. Of the habitats surveyed, shade coffee was second only to acacia groves in the abundance and diversity of Nearctic migrants. The two plantation types have similar bird species lists and both are similar in composition to the dominant woodland—mixed pine-oak. Both types of shade coffee plantation habitats differ from other local habitats in supporting highly seasonal bird populations. Survey numbers almost double during the dry season—an increase that is found in omnivorous migrants and omnivorous, frugivorous, and nectarivorous resident species. Particularly large influxes were found for Tennessee warblers (Vermivora peregrina) and northern orioles (Icterus galbula) in Inga dominated plantations.  相似文献   

20.
I examined the effects of two farm management variables, shade‐tree species and crop structure, on the winter (dry season) arthropod and bird communities in a Jamaican shade coffee plantation. Birds and canopy arthropods were more abundant in areas of the plantation shaded by the tree Inga vera than by Pseudalbizia berteroana. The abundance of arthropods (potential pests) on the coffee crop, however, was unaffected by shade‐tree species. Canopy arthropods, particularly psyllids (Homoptera), were especially abundant on Inga in late winter, when it was producing new leaves and nectar‐rich flowers. Insectivorous and nectarivorous birds showed the strongest response to Inga; thus the concentration of birds in Inga may be a response to abundant food. Coffee‐tree arthropod abundance was much lower than in the shade trees and was affected little by farm management variables, although arthropods tended to be more abundant in dense (unpruned) than open (recently pruned) areas of the plantation. Perhaps in response, leaf‐gleaning insectivorous birds were more abundant in dense areas. These results underscore that although some shade coffee plantations may provide habitat for arthropod and bird communities, differences in farm management practices can significantly affect their abundances. Furthermore, this study provides evidence suggesting that bird communities in coffee respond to spatial variation in arthropod availability. I conclude that /. vera is a better shade tree than P. berteroana, but a choice in crop structures is less clear due to changing effects of prune management over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号