首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats coding for glutamine in the HD gene product huntingtin. Although HD symptoms reflect preferential neuronal death in specific brain regions, huntingtin is expressed in almost all tissues, so abnormalities outside the brain might be expected. Although involvement of nuclei and mitochondria in HD pathophysiology has been suggested, specific intracellular defects that might elicit cell death have been unclear. Mitochondria dysfunction is reported in HD brains; mitochondria are organelles that regulates apoptotic cell death. We now report that lymphoblasts derived from HD patients showed increased stress-induced apoptotic cell death associated with caspase-3 activation. When subjected to stress, HD lymphoblasts also manifested a considerable increase in mitochondrial depolarization correlated with increased glutamine repeats.  相似文献   

2.
Nitric oxide (NO) and zinc (Zn2+) are implicated in the pathogenesis of cerebral ischemia and neurodegenerative diseases. However, their relationship and the molecular mechanism of their neurotoxic effects remain unclear. Here we show that addition of exogenous NO or NMDA (to increase endogenous NO) leads to peroxynitrite (ONOO-) formation and consequent Zn2+ release from intracellular stores in cerebrocortical neurons. Free Zn2+ in turn induces respiratory block, mitochondrial permeability transition (mPT), cytochrome c release, generation of reactive oxygen species (ROS), and p38 MAP kinase activation. This pathway leads to caspase-independent K+ efflux with cell volume loss and apoptotic-like death. Moreover, Zn2+ chelators, ROS scavengers, Bcl-xL, dominant-interfering p38, or K+ channel blockers all attenuate NO-induced K+ efflux, cell volume loss, and neuronal apoptosis. Thus, these data establish a new form of crosstalk between NO and Zn2+ apoptotic signal transduction pathways that may contribute to neurodegeneration.  相似文献   

3.
Biochemical cascades initiated by oxidative stress and excitotoxic intracellular calcium rises are thought to converge on mitochondrial dysfunction. We investigated the contribution of mitochondrial dysfunction to free radical (FR) overproduction in rat CA1 pyramidal neurons of organotypic slices subjected to a hypoxic-hypoglycemic insult. Ischemia-induced FR generation was decreased by the mitochondrial complex I blocker, rotenone, indicating that mitochondria are the principal source of ischemic FR production. Measurements of mitochondrial calcium with the mitochondrial calcium probe dihydroRhod-2, revealed that FR production during and after the anoxic episode correlates with the accumulation of mitochondrial calcium. However, the mitochondrial calcium uptake inhibitor Ru360 did not prevent FR generation during ischemia and attenuated it to some degree during reoxygenation. On the other hand, the mitochondrial permeability transition blocker cyclosporinA (CsA) completely arrested both ischemic FR generation and mitochondrial calcium overload, and prevented deterioration of neuronal intrinsic membrane properties. CsA had no effect on the accumulation of intracellular calcium during ischemia-reperfusion. Nicotinamide, a blocker of NAD+ hydrolysis, reproduced the CsA effects on FR generation, mitochondrial calcium accumulation and cytoplasmic calcium increases. These observations suggest that a major determinant of ischemic FR generation in pyramidal neurons is the uncoupling of the mitochondrial respiratory chain, which may be associated with the mitochondrial permeability transition.  相似文献   

4.
Cellular ionic homeostasis, fundamentally K(+) homeostasis, has been implicated as a critical regulator of apoptosis. The intracellular K(+) efflux on apoptotic insult and suppression of apoptosis by high concentration of extracellular K(+) or after inhibition of this efflux by K(+) channel blockers have established the crucial role of K(+) in turning on the apoptotic machinery. Several contrasting observations have reported the antiapoptotic effect of intracellular K(+) concentration to be the result of inhibition of cytochrome c release from mitochondria, but the exact inhibitory mechanism remains obscure. However, here we show the blockage of K(+) efflux during apoptosis did not affect cytochrome c release from the mitochondria, still completely inhibited the formation of the apoptosome comprising Apaf-1, cytochrome c, caspase-9 and other accessories. As a consequence of this event, procaspase-9, -3, -8 and other death-related proteins were not processed. Furthermore, physiological concentrations of K(+) also inhibited the processing of procaspase-3 by purified caspase-8 or -9, the nucleosomal DNA fragmentation by purified DFF40/CAD and the nuclear fragmentation to varying extents. Altogether, these findings suggest that the efflux of K(+) is prerequisite not only for the formation of the apoptosome but also for the downstream apoptotic signal-transduction pathways.  相似文献   

5.
Mitochondrial fragmentation is recognized to be an important event during the onset of apoptosis. In this current study, we have used single cell imaging to investigate the role of the mitochondrial fission protein DRP‐1 on mitochondrial morphology and mitochondrial fragmentation in primary hippocampal neurons undergoing necrotic or apoptotic cell death. Treatment of neurons with 500 nM staurosporine (apoptosis) or 30 μM glutamate (l ‐Glu; excitotoxic necrosis) produced a fragmentation and condensation of mitochondria, which although occurred over markedly different time frames appeared broadly similar in appearance. In neurons exposed to an apoptotic stimuli, inhibiting DRP‐1 activity using overexpression of the dominant negative DRP‐1K38A slowed the rate of mitochondrial fragmentation and decreased total cell death when compared to overexpression of wild‐type DRP‐1. In contrast, responses to l ‐Glu appeared DRP‐1 independent. Similarly, alterations in the fission/fusion state of the mitochondrial network did not alter mitochondrial Ca2+ uptake or the ability of l ‐Glu to stimulate excitotoxic Ca2+ overload. Finally, apoptosis‐induced mitochondrial fragmentation was observed concurrent with recruitment of Bax to the mitochondrial membrane. In contrast, during glutamate excitotoxicity, Bax remained in the cytosolic compartment. We conclude that different pathways lead to the appearance of fragmented mitochondria during necrotic and apoptotic neuronal cell death. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:335–341, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20336  相似文献   

6.
A decrease in the incubation medium osmolarity from 320 to 120 mosM reverses the pH dependence of K+ efflux from rat liver mitochondria. The K+ efflux is no longer inhibited by oligomycin and a free radical scavenger butylhydroxytoluene. At 320 mosM, the addition of carbonyl cyanide 3-chlorophenylhydrazone (CCCP) accelerates the K+ efflux, while EGTA inhibits it. At 120 mosM these CCCP and EGTA effects are reversed. In either case the K+ efflux is inhibited by Mg2+. The decrease in osmolarity changes the ruthenium red-insensitive Ca2+ efflux in the same manner. It has thus been shown that the modification of the mitochondrial structure by changing the incubation medium osmolarity results in a qualitative alteration of the systems regulating the K+ and Ca2+ effluxes.  相似文献   

7.
Apoptosis plays an important role in maintaining the balance between proliferation and cell loss in the intestinal epithelium. Apoptosis rates may increase in intestinal pathologies such as inflammatory bowel disease and necrotizing enterocolitis, suggesting pharmacological prevention of apoptosis as a therapy for these conditions. Here, we explore the feasibility of this approach using the rat epithelial cell line IEC-6 as a model. On the basis of the known role of K+ efflux in apoptosis in various cell types, we hypothesized that K+ efflux is essential for apoptosis in enterocytes and that pharmacological blockade of this efflux would inhibit apoptosis. By probing intracellular [K+] with the K+-sensitive fluorescent dye and measuring the efflux of 86Rb+, we found that apoptosis-inducing treatment with the proteasome inhibitor MG-132 leads to a twofold increase in K+ efflux from IEC-6 cells. Blockade of K+ efflux with tetraethylammonium, 4-aminopyridine, stromatoxin, chromanol 293B, and the recently described K+ channel inhibitor 48F10 prevents DNA fragmentation, caspase activation, release of cytochrome c from mitochondria, and loss of mitochondrial membrane potential. Thus K+ efflux occurs early in the apoptotic program and is required for the execution of later events. Apoptotic K+ efflux critically depends on activation of p38 MAPK. These results demonstrate for the first time the requirement of K+ channel-mediated K+ efflux for progression of apoptosis in enterocytes and suggest the use of K+ channel blockers to prevent apoptotic cell loss occurring in intestinal pathologies.  相似文献   

8.
It has been found that addition of iron(III)-gluconate complex to rat liver mitochondria disturbed the mitochondrial Ca2+ transport. Indirect evidence when the changes in the membrane potential during the transport of Ca2+ were followed, as well as direct evidence, when the fluxes of Ca2+ were monitored by a Ca2+-selective electrode, indicated that this iron complex induced an efflux of Ca2+ from liver mitochondria. The mechanisms by which iron induced Ca2+ release appeared to be linked to the induction of lipoperoxidation of mitochondrial membrane. The mitochondrial membrane, however, did not become irreversibly damaged under these conditions, as indicated by its complete repolarization. It was also shown that the induction by iron of lipoperoxidation brought about an efflux of K+ from mitochondria.  相似文献   

9.
10.
Mitochondrial dysfunction has been widely associated with programmed cell death. Studies of intact cells are important for the understanding of the process of cell death and its relation to mitochondrial physiology. Using cytofluorometric approaches we studied the mitochondrial behavior in an erythroleukemic cell line. The effects of protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), potassium exchanger (nigericin), potassium ionophore (valinomycin), Na+K+-ATPase inhibitor (ouabain) and mitochondrial permeability transition pore inhibitor (cyclosporin A) were evaluated. Cyclosporin A (CSA) was very effective in attenuating the disruption of inner mitochondrial membrane potential induced by CCCP. However, CSA failed to protect the loss of inner mitochondrial membrane potential induced by potassium intracellular flux manipulation. Our findings suggest that mitochondrial cyclophilin is not involved in the cell events mediated by deregulation of potassium flux, underlining the need for further studies in intact tumor cells for a better understanding of the involvement of mitochondria physiology in cell death events.  相似文献   

11.
Mitochondrial respiratory chain dysfunction, impaired intracellular Ca2+ homeostasis and activation of the mitochondrial apoptotic pathway are pathological hallmarks in animal and cellular models of familial amyotrophic lateral sclerosis associated with Cu/Zn-superoxide dismutase mutations. Although intracellular Ca2+ homeostasis is thought to be intimately associated with mitochondrial functions, the temporal and causal correlation between mitochondrial Ca2+ uptake dysfunction and motor neuron death in familial amyotrophic lateral sclerosis remains to be established. We investigated mitochondrial Ca2+ handling in isolated brain, spinal cord and liver of mutant Cu/Zn-superoxide dismutase transgenic mice at different disease stages. In G93A mutant transgenic mice, we found a significant decrease in mitochondrial Ca2+ loading capacity in brain and spinal cord, as compared with age-matched controls, very early on in the course of the disease, long before the onset of motor weakness and massive neuronal death. Ca2+ loading capacity was not significantly changed in liver G93A mitochondria. We also confirmed Ca2+ capacity impairment in spinal cord mitochondria from a different line of mice expressing G85R mutant Cu/Zn-superoxide dismutase. In excitable cells, such as motor neurons, mitochondria play an important role in handling rapid cytosolic Ca2+ transients. Thus, mitochondrial dysfunction and Ca2+-mediated excitotoxicity are likely to be interconnected mechanisms that contribute to neuronal degeneration in familial amyotrophic lateral sclerosis.  相似文献   

12.
Based on the effects of ionomycin upon mitochondrial respiration, ionomycin was shown to be an effective ionophore for Ca2+ in rat liver mitochondria. The ionomycin-induced efflux of Ca2+ across the inner membrane was more sensitive to loading the mitochondria with Ca2+ than was efflux catalyzed by A23187. At saturating concentrations of Ca2+, the turnover number for ionomycin was 3- to 5-fold greater than that of A23187. Ionomycin catalyzed the efflux of mitochondrial Mg2+ at rates comparable to those observed with A23187. Ionomycin also mediated an efflux of K+ provided that the mitochondria were depleted of their endogenous divalent metal ions. The apparent turnover numbers for K+ efflux suggest that ionomycin is more specific for divalent metal ions than A23187.  相似文献   

13.
Apoptotic cell death has been observed in many in vivo and in vitro models of ischemia. However, the molecular pathways involved in ischemia-induced apoptosis remain unclear. We have examined the role of Bcl-2 family of proteins in mediating apoptosis of PC12 cells exposed to the conditions of oxygen and glucose deprivation (OGD) or OGD followed by restoration of oxygen and glucose (OGD-restoration, OGD-R). OGD decreased mitochondrial membrane potential and induced necrosis of PC12 cells, which were both prevented by the overexpression of Bcl-2 proteins. OGD-R caused apoptotic cell death, induced cytochrome C release from mitochondria and caspase-3 activation, decreased mitochondrial membrane potential, and increased levels of pro-apoptotic Bax translocated to the mitochondrial membrane, all of which were reversed by overexpression of Bcl-2. These results demonstrate that the cell death induced by OGD and OGD-R in PC12 cells is potentially mediated through the regulation of mitochondrial membrane potential by the Bcl-2 family of proteins. It also reveals the importance of developing therapeutic strategies for maintaining the mitochondrial membrane potential as a possible way of reducing necrotic and apoptotic cell death that occurs following an ischemic insult.  相似文献   

14.
Sustained oscillations of transmembrane fluxes of Ca2+ and other ions in isolated mitochondria are described. The data are presented that the major cause of the oscillations is the Ca2+-induced Ca2+ efflux from the mitochondrial matrix and spontaneous opening/closing of the permeability transition pore in the inner mitochondrial membrane. Conditions favourable for the generation of oscillations are considered. The role of phospholipid peroxidation and hydrolysis in the generation of [Ca2+] oscillations is emphasized. Literature data concerning [Ca2+] changes in the mitochondrial matrix in intact cells and the data on the participation of mitochondria in intracellular Ca2+ oscillation and in the Ca2+ wave propagation are reviewed. The hypothesis that mitochondria are able to generate [Ca2+] oscillations in intact cells is put forward. It is assumed that Ca2+ oscillations can protect mitochondria of resting cells from osmotic shock and oxidative stress.  相似文献   

15.
Chronic exposure to the pesticide rotenone induces a selective degeneration of nigrostriatal dopaminergic neurons and reproduces the features of Parkinson's disease in experimental animals. This action is thought to be relevant to its inhibition of the mitochondrial complex I, but the precise mechanism of this suppression in selective neuronal death is still elusive. Here we investigate the mechanism of dopaminergic neuronal death mediated by rotenone in primary rat mesencephalic neurons. Low concentrations of rotenone (5-10 nM) induce the selective death of dopaminergic neurons without significant toxic effects on other mesencephalic cells. This cell death was coincident with apoptotic events including capsase-3 activation, DNA fragmentation, and mitochondrial membrane depolarization. Pretreatment with coenzyme Q10, the electron transporter in the mitochondrial respiratory chain, remarkably reduced apoptosis as well as the mitochondrial depolarization induced by rotenone, but other free radical scavengers such as N-acetylcysteine, glutathione, and vitamin C did not. Furthermore, the selective neurotoxicity of rotenone was mimicked by the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a cyanide analog that effectively collapses a mitochondrial membrane potential. These data suggest that mitochondrial depolarization may play a crucial role in rotenone-induced selective apoptosis in rat primary dopaminergic neurons.  相似文献   

16.
Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition pores. On the other hand, activation of mitochondrial ATP-sensitive K+ channels (mitoKATP) protects the heart against ischemic damage. This study examined the effects of mitoKATP and mitochondrial permeability transition on isolated rat heart mitochondria and cardiac cells submitted to simulated ischemia and reperfusion (cyanide/aglycemia). Both mitoKATP opening, using diazoxide, and the prevention of mitochondrial permeability transition, using cyclosporin A, protected against cellular damage, without additive effects. MitoKATP opening in isolated rat heart mitochondria slightly decreased Ca2+ uptake and prevented mitochondrial reactive oxygen species production, most notably in the presence of added Ca2+. In ischemic cells, diazoxide decreased ROS generation during cyanide/aglycemia while cyclosporin A prevented oxidative stress only during simulated reperfusion. Collectively, these studies indicate that opening mitoKATP prevents cellular death under conditions of ischemia/reperfusion by decreasing mitochondrial reactive oxygen species release secondary to Ca2+ uptake, inhibiting mitochondrial permeability transition.  相似文献   

17.
Mitochondrial dysfunction is believed to participate in Huntington's disease (HD) pathogenesis. Here we compare the bioenergetic behavior of forebrain mitochondria isolated from different transgenic HD mice (R6/2, YAC128 and Hdh150 knock-in) and wild-type littermates with the first determination of in situ respiratory parameters in intact HD striatal neurons. We assess the Ca2+-loading capacity of isolated mitochondria by steady Ca2+-infusion. Mitochondria from R6/2 mice (12-13 weeks) and 12 months YAC128, but not homozygous or heterozygous Hdh150 knock-in mice (15-17 weeks), exhibit increased Ca2+-loading capacity when compared with respective wild-type littermates. In situ mitochondria in intact striatal neurons show high respiratory control. Moreover, moderate expression of full-length mutant huntingtin (in Hdh150 knock-in heterozygotes) does not significantly impair mitochondrial respiration in unstimulated neurons. However, when challenged with energy-demanding stimuli (NMDA-receptor activation in pyruvate-based media to accentuate the mitochondria role in Ca2+-handling), Hdh150 neurons are more vulnerable to Ca2+-deregulation than neurons from their wild-type littermates. These results stress the importance of assessing HD mitochondrial function in the cellular context.  相似文献   

18.
Mitochondria in nerve terminals are subjected to extensive Ca2+ fluxes and high energy demands, but the extent to which the synaptic mitochondria buffer Ca2+ is unclear. In this study, we identified a difference in the Ca2+ clearance ability of nonsynaptic versus synaptic mitochondrial populations enriched from rat cerebral cortex. Mitochondria were isolated using Percoll discontinuous gradients in combination with high pressure nitrogen cell disruption. Mitochondria in the nonsynaptic fraction originate from neurons and other cell types including glia, whereas mitochondria enriched from a synaptosomal fraction are predominantly neuronal and presynaptic in origin. There were no differences in respiration or initial Ca2+ loads between nonsynaptic and synaptic mitochondrial populations. Following both bolus and infusion Ca2+ addition, nonsynaptic mitochondria were able to accumulate significantly more exogenously added Ca2+ than the synaptic mitochondria before undergoing mitochondrial permeability transition, observed as a loss in mitochondrial membrane potential and decreased Ca2+ uptake. The limited ability of synaptic mitochondria to accumulate Ca2+ could result from several factors including a primary function of ATP production to support the high energy demand of presynaptic terminals, their relative isolation in comparison with the threads or clusters of mitochondria found in the soma of neurons and glia, or the older age and increased exposure to oxidative damage of synaptic versus nonsynaptic mitochondria. By more readily undergoing permeability transition, synaptic mitochondria may initiate neuron death in response to insults that elevate synaptic levels of intracellular Ca2+, consistent with the early degeneration of distal axon segments in neurodegenerative disorders.  相似文献   

19.
Overactivation of certain K(+) channels can mediate excessive K(+) efflux and intracellular K(+) depletion, which are early ionic events in apoptotic cascade. The present investigation examined a possible role of the KCNQ2/3 channel or M-channel (also named Kv7.2/7.3 channels) in the pro-apoptotic process. Whole-cell recordings detected much larger M-currents (212 ± 31 pA or 10.5 ± 1.5 pA/pF) in cultured hippocampal neurons than that in cultured cortical neurons (47 ± 21 pA or 2.4 ± 0.8 pA/pF). KCNQ2/3 channel openers N-ethylmaleimide (NEM) and flupirtine caused dose-dependent K(+) efflux, intracellular K(+) depletion, and cell death in hippocampal cultures, whereas little cell death was induced by NEM in cortical cultures. The NEM-induced cell death was antagonized by co-applied KCNQ channel inhibitor XE991 (10 μM), or by elevated extracellular K(+) concentration. Supporting a mediating role of KCNQ2/3 channels in apoptosis, expression of KCNQ2 or KCNQ2/3 channels in Chinese hamster ovary (CHO) cells initiated caspase-3 activation. Consistently, application of NEM (20 μM, 8 h) in hippocampal cultures similarly caused caspase-3 activation assessed by immunocytochemical staining and western blotting. NEM increased the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), induced mitochondria membrane depolarization, cytochrome c release, formation of apoptosome complex, and apoptosis-inducing factor (AIF) translocation into nuclear. All these events were attenuated by blocking KCNQ2/3 channels. These findings provide novel evidence that KCNQ2/3 channels could be an important regulator in neuronal apoptosis.  相似文献   

20.
Mitochondria from Neurospora crassa, like mammalian mitochondria, carry out rapid, energy-linked K+ uptake and H+ release in the presence of valinomycin. The maximal rate of K+ uptake was about 1.0 mumol/mg of mitochondrial protein per min and was seen at valinomycin concentrations in the range of 100 to 200 mug per mg of mitochondrial protein and at K+ concentrations of 4 mM or above. Uptake could be supported either by substrate oxidation or by adenosine 5'-triphosphate (ATP), and was inhibited in the former case by antimycin or cyanide, in the latter case by oligomycin, and in both cases by 2,4-dinitrophenol. Mitochondria from the cytochrome-deficient mutant poky carried out substrate-driven K+ uptake at reduced rates, but oligomycin-sensitive, ATP-driven K+ uptake at rates about 60% greater than those shown by wild-type mitochondria. This result is consistent with the recent finding (Mainzer and Slayman 1976) that poky contains elevated amounts of oligomycin-sensitive mitochondrial adenosine 5'-triphosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号