共查询到20条相似文献,搜索用时 0 毫秒
1.
Lysozyme is a sweet-tasting protein with a sweetness threshold value of around 7 microM. To clarify the effect of basicity at the side chain of lysine residues on the threshold values of sweetness, charge-specific chemical modifications such as guanidination, acetylation and phosphopyridoxylation of lysine residues were performed. Sensory analysis showed that the sweetness threshold value of lysozyme was not changed by guanidination, whereas it was increased markedly by acetylation and phosphopyridoxylation. To confirm the importance of the basicity in the lysine residues in detail, purification of acetylated (Ac-) and phosphopyridoxylated (PLP-) lysozymes using SP-ion exchange column chromatography was performed. The threshold values were not changed by modification with fewer than two residues (approximately 7 microM), whereas the threshold values significantly increased to 15 and 34 microM when tetra-Ac and tri-PLP, respectively. Furthermore, sweetness was not detected at 30 microM (hexa-, penta-Ac and tetra-PLP). It should be noted that removal of the negative charges of the phosphate groups in the tri-PLP lysozyme by acid phosphatase resulted in the recovery of sweetness (6.4 microM), indicating that basicity at the position of the lysine residues is responsible for lysozyme sweetness and that strict charge complementarities might be required for interaction to its putative receptor. 相似文献
2.
Additives are widely used to suppress aggregation of therapeutic proteins. However, the molecular mechanisms of effect of additives to stabilize proteins are still unclear. To understand this, we herein perform molecular dynamics simulations of lysozyme in the presence of three commonly used additives: arginine, lysine, and guanidine. These additives have different effects on stability of proteins and have different structures with some similarities; arginine and lysine have aliphatic side chain, while arginine has a guanidinium group. We analyze atomic contact frequencies to study the interactions of the additives with individual residues of lysozyme. Contact coefficient, quantified from contact frequencies, is helpful in analyzing the interactions with the guanidine groups as well as aliphatic side chains of arginine and lysine. Strong preference for contacts to the additives (over water) is seen for the acidic followed by polar and the aromatic residues. Further analysis suggests that the hydration layer around the protein surface is depleted more in the presence of arginine, followed by lysine and guanidine. Molecular dynamics simulations also reveal that the internal dynamics of protein, as indicated by the lifetimes of the hydrogen bonds within the protein, changes depending on the additives. Particularly, we note that the side-chain hydrogen-bonding patterns within the protein differ with the additives, with several side-chain hydrogen bonds missing in the presence of guanidine. These results collectively indicate that the aliphatic chain of arginine and lysine plays a critical role in the stabilization of the protein. 相似文献
3.
Lysozyme (LZ), a bacteriolytic enzyme, is found in the egg white of many avian eggs and plays an important role in host defense; however, LZ activity in emu (Dromaius novaehollandiae) egg white is exceptionally undetectable. We cloned and characterized emu goose-type LZ (LZG) and chicken-type LZ (LZC) genes. RT-PCR analysis revealed very low LZG gene expression levels and absence of LZC gene expression in the emu oviduct. Sequencing of full-length LZG and LZC cDNAs indicated that their amino acid sequences show high similarities to ostrich LZG and LZC, respectively, with conserved catalytic residues for enzymatic activities. Whereas recombinant emu LZG prepared using Pichia pastoris exhibited similar enzyme activity as ostrich LZG, recombinant emu LZC exhibited significantly higher lytic activity than chicken LZC. We concluded that emus have functional genes for both LZG and LZC like many other avians, and the LZG gene is expressed in oviduct probably as in other ratite, however, its expression levels in egg white were low to be detected. 相似文献
4.
The effects of several variables on the refolding of hen egg white lysozyme have been studied. Lysozyme was denatured in both
urea, and guanidine hydrochloride (GuHCl), and batch refolded by dilution (100 to 1000 fold) into 0.1M Tris-HCl, pH 8.2, 1
mM EDTA, 3 mM reduced glutathione and 0.3 mM oxidised glutathione. Refolding was found to be sensitive to temperature, with
the highest refolding yield obtained at 50°C. The apparent activation energy for lysozyme refolding was found to be 56 kJ/mol.
Refolding by dilution results in low concentrations of both denaturant and reducing agent species. It was found that the residual
concentrations obtained during dilution (100-fold dilution: [GuHCl]=0.06 mM, [DTT]=0.15 mM) were significant and could inhibit
lysozyme refolding. This study has also shown that the initial protein concentration (1–10 mg/mL) that is refolded is an important
parameter. In the presence of residual GuHCl and DTT, higher refolding yields were obtained when starting from higher initial
lysozyme concentrations. This trend was reversed when residual denaturant components were removed from the refolding buffer. 相似文献
5.
Various proteins have been shown to form various aggregated structures including the filamentous aggregates known as amyloid fibrils depending on the solution conditions. Hen egg white lysozyme (HEWL) is one of the proteins that form the amyloid fibrils. To gain insight into the mechanism of this polymorphism of the aggregated structures, we employed a model system consisting of HEWL, pure water, and ethanol, and investigated the kinetic process of the fibril formation in various salt concentrations with time-resolved neutron scattering. It was shown that by addition of NaCl in a range between 0.3 mM and 1.0 mM to HEWL solution in 90% ethanol, gelation occurred, and this gelation proceeded through a two-step process: the lateral association of the protofilaments, followed by the cross-linking of these fibrils formed. Both the structures of the fibrils and the rate of the gelation depended on NaCl concentration. The average structures of the fibrils formed at 1.0 mM NaCl were characterized by the radius of gyration of their cross-section (45.9(+/-0.4)A) and the number of the protofilaments within the fibril (4.10(+/-0.12)), corresponding to the mature amyloid fibrils. A range of intermediate structures was formed below 1 mM NaCl. Above 2 mM NaCl, precipitation occurred because of the formation of amorphous aggregates. Here the branch point to the formation of the mature amyloid fibrils or to the amorphous aggregates was after the formation of the protofilaments. Sensitivity of the aggregated structures to salt concentration suggests that electrostatic interaction plays an essential role in the formation of these structures. The structural diversity both in the fibrils and the aggregated structures of the fibrils can be interpreted in terms of the difference in the degree of the electrostatic shielding at different salt concentrations. 相似文献
6.
Kuntz and Kauzmann have argued that dehydrating a protein results in conformational changes. In contrast, Rupleyet al. have developed a hydration model which involves no significant change in conformation; the onset of enzyme activity in hen
egg-white lysozyme at hydration values of about 0.2 g water/g protein they ascribe rather to a solvation effect. Using a direct
difference infra-red technique we can follow specific hydration events as water is added to a dry protein. Conformational
studies of lysozyme using laser Raman spectroscopy indicate changes in conformation with hydration that are complete just
before measurable activity is found. Parallel nuclear magnetic resonance measurements of exchangeability of the main chain
amide hydrogens, as a function of hydration from near dryness, suggest a hydration-related increase in conformational flexibility
which occurs before-and is probably necessary for-the Raman-detected conformational changes. Very recent inelastic neutron
scattering measurements provides direct evidence of a flexibility change induced by hydration, which is apparently necessary
before the enzyme can achieve adequate flexibility for it to begin to function. 相似文献
7.
The role of aromatic residues in the hydrophobic core of the villin headpiece subdomain 总被引:1,自引:0,他引:1 下载免费PDF全文
Frank BS Vardar D Buckley DA McKnight CJ 《Protein science : a publication of the Protein Society》2002,11(3):680-687
Small autonomously folding proteins are of interest as model systems to study protein folding, as the same molecule can be used for both experimental and computational approaches. The question remains as to how well these minimized peptide model systems represent larger native proteins. For example, is the core of a minimized protein tolerant to mutation like larger proteins are? Also, do minimized proteins use special strategies for specifying and stabilizing their folded structure? Here we examine these questions in the 35‐residue autonomously folding villin headpiece subdomain (VHP subdomain). Specifically, we focus on a cluster of three conserved phenylalanine (F) residues F47, F51, and F58, that form most of the hydrophobic core. These three residues are oriented such that they may provide stabilizing aromatic–aromatic interactions that could be critical for specifying the fold. Circular dichroism and 1D‐NMR spectroscopy show that point mutations that individually replace any of these three residues with leucine were destabilized, but retained the native VHP subdomain fold. In pair‐wise replacements, the double mutant that retains F58 can adopt the native fold, while the two double mutants that lack F58 cannot. The folding of the double mutant that retains F58 demonstrates that aromatic–aromatic interactions within the aromatic cluster are not essential for specifying the VHP subdomain fold. The ability of the VHP subdomain to tolerate mutations within its hydrophobic core indicates that the information specifying the three dimensional structure is distributed throughout the sequence, as observed in larger proteins. Thus, the VHP subdomain is a legitimate model for larger, native proteins. 相似文献
8.
Sourav Das Santanu Santra Mostofa Ataur Rohman Mahuah Ray 《Journal of biomolecular structure & dynamics》2013,31(15):4019-4034
AbstractThe interaction of 6-hydroxyflavone (6HF) with hen egg white lysozyme (HEWL) has been executed using multi-spectroscopic and computational methods. Steady state fluorescence studies indicated that static quenching mechanism is involved in the binding of 6HF with HEWL, which was further supported by excited state lifetime and UV–vis absorption studies. The binding constant (Kb) of the HEWL–6HF complex was observed to be 6.44?±?0.09?×?104 M?1 at 293?K, which decreases with the increase in temperature. The calculation of the thermodynamic quantities showed that the binding is exothermic in nature with a negative enthalpy change (ΔH = ?11.91?±?1.02?kJ mol?1) along with a positive entropy change (ΔS = +51.36?±?2.43 J K?1 mol?1), and the major forces responsible for the binding are hydrogen bonding and hydrophobic interactions. The possibility of energy transfer from tryptophan (Trp) residue to the 6HF ligand was observed from Fo¨rster’s theory. The inclusion of 6HF within the binding site of HEWL induces some micro-environmental changes around the Trp residues as indicated by synchronous and three-dimensional (3D) fluorescence studies. The changes in secondary structural components of HEWL are observed on binding with 6HF along with a reduction in % α-helical content. Computational studies correlate well with the experimental finding, and the ligand 6HF is found to bind near to Trp 62 and Trp 63 residues of HEWL. Altogether, the present study provides an insight into the interaction dynamics and energetics of the binding of 6HF to HEWL.Communicated by Ramaswamy H. Sarma 相似文献
9.
10.
Mohammad Rehan Ajmal Sumit Kumar Chaturvedi Nida Zaidi Parvez Alam Masihuz Zaman Mohammad Khursheed Siddiqi 《Journal of biomolecular structure & dynamics》2017,35(10):2197-2210
The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (Kb) in the order of 1.57?×?104 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis. 相似文献
11.
目的:探索定位于细胞质、内质网膜及内质网腔中的分子伴侣及其组合对于带有不同信号肽的胞外β-1,3-葡聚糖酶(EXGl)在巴斯德毕赤酵母GS200中表达水平的影响。方法:通过融合PCR技术分别构建带有酵母a交配因子引导肽序列(仅MF)、酵母仅交配因子信号肽序列(ccPre)和重链结合蛋白(Bip)信号肽序列的报告蛋白EXGl的表达质粒pPIC9-EXG1,同时构建分子伴侣基因及其组合的表达质粒pBLArg-IV,然后将2种重组质粒共转化至毕赤酵母宿主菌GS200,转化子经筛选获得共表达菌株,通过测定EXG1酶活来评价分子伴侣与信号肽对其表达水平的影响。结果:细胞质及内质网膜上的分子伴侣Sec61a、Sec61B及胞质中的分子伴侣Ydjl、Ssal、Hsp104及其组合对各种信号肽引导的报告蛋白EXG1的表达水平没有显著影响。然而,内质网腔中的分子伴侣Bip、EroI、PDI与HacI组合能显著提高报告蛋白EXG1的表达水平,其中,以aMF或ctPre作为信号肽引导的报告蛋白EXG1的表达水平分别提高了2.6倍和3.8倍,以Bip信号肽引导的报告蛋白EXGl的表达水平提高了20%~45%,而对于以EXG1自身信号肽引导的报告蛋白EXG1的表达水平没有显著影响。结论:在酵母表达体系中,内质网腔中的分子伴侣是报告蛋白EXG1表达水平的重要影响因素.但分子伴侣对于信号肽的选择性还须进一步证明。 相似文献
12.
DNA gyrase is a type II topoisomerase that is responsible for maintaining the topological state of bacterial and some archaeal genomes. It uses an ATP-dependent two-gate strand-passage mechanism that is shared among all type II topoisomerases. During this process, DNA gyrase creates a transient break in the DNA, the G-segment, to form a cleavage complex. This allows a second DNA duplex, known as the T-segment, to pass through the broken G-segment. After the broken strand is religated, the T-segment is able to exit out of the enzyme through a gate called the C-gate. Although many steps of the type II topoisomerase mechanism have been studied extensively, many questions remain about how the T-segment ultimately exits out of the C-gate. A recent cryo-EM structure of Streptococcus pneumoniae GyrA shows a putative T-segment in close proximity to the C-gate, suggesting that residues in this region may be important for coordinating DNA exit from the enzyme. Here, we show through site-directed mutagenesis and biochemical characterization that three conserved basic residues in the C-gate of DNA gyrase are important for DNA supercoiling activity, but not for ATPase or cleavage activity. Together with the structural information previously published, our data suggest a model in which these residues cluster to form a positively charged region that facilitates T-segment passage into the cavity formed between the DNA gate and C-gate. 相似文献
13.
Hiroshi Wako 《Journal of Protein Chemistry》1989,8(5):589-607
Dynamic structures of globular proteins are studied on the basis of correlative movements of residues around their native conformations, which are computed by means of the normal mode analysis. To describe the dynamic structures of a protein, the core regions moving with strong positive or negative correlations to other regions of the polypeptide chain are detected from the correlation maps of the movements of residues. Such core regions are different, according to the definition, from the regions defined from a geometrical point of view, such as secondary structures, domains, modules, and so on. The core regions are actually detected for four proteins, myoglobin, Bence-Jones protein, flavodoxin, and hen egg-white lysozyme, with different folding types from each other. The results show that some of them coincide with the secondary structures, domains, or modules, but others do not. Then, the dynamic structure of each protein is discussed in terms of the dynamic cores detected, as compared with the secondary structures, domains, and modules. 相似文献
14.
Marisa C. F. Casteluber Leonardo M. Damasceno Wendel B. da Silveira Raphael H. S. Diniz Frederico J. V. Passos Flávia M. L. Passos 《Biotechnology progress》2012,28(6):1419-1425
Streptavidin is widely used as an analytical tool and affinity tag together with biotinylated surfaces or molecules. We report for the first time a simple strategy that yields high biomass of a Pichia pastoris strain containing a methanol induced core streptavidin (cStp) gene. Three factors were evaluated for biomass production: glycerol concentration, aeration, and feed flow rates in a bioreactor. Recycling of recombinant cells, either free or immobilized, was investigated during induction. Concentration of 2.0 M glycerol, feeding flow rate of 0.11 mL min?1, and aeration by air injection dispersed with a porous stone combined with agitation at 500 rpm were the set of conditions resulting into maximum biomass yield (150 g L?1). These parameters yielded 4.0 g L?1 of cStp, after 96 h of induction. Recombinant biomass was recycled twice before being discarded, which can reduce production costs and simplify the process. Immobilized P. pastoris biomass produced 2.94 and 1.70 g L?1 of cStp in the first and second induction cycle, respectively. Immobilization and recycling of recombinant P. pastoris biomass opens new possibilities as a potential strategy to improve volumetric productivity for heterologous protein expression. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012 相似文献
15.
Agustín Vioque Francisco Hernández Enrique Palacián 《Molecular and cellular biochemistry》1987,76(2):141-146
The contribution of lysine and arginine residues to the formation of yeast ribonucleoprotein complex 5S RNA. protein YL3 has been investigated by determining the effects on complex formation of modification with chemical reagents specific for either lysine or arginine. Treatment of protein YL3 with acetic anhydride, malefic anhydride or phenylglyoxal is accompanied by loss of its capacity to bind to 5S RNA. This effect is accomplished by modification with phenylglyoxal of only 3 arginine residues per YL3 molecule. In contrast, a large number of protein YL3 amino groups [16] must be modified by acetic anhydride to prevent complex formation. 相似文献
16.
Aarya Venkat Daniel Tehrani Rahil Taujale Wayland Yeung Nathan Gravel Kelley W. Moremen Natarajan Kannan 《The Journal of biological chemistry》2022,298(8)
Hydrophobic cores are fundamental structural properties of proteins typically associated with protein folding and stability; however, how the hydrophobic core shapes protein evolution and function is poorly understood. Here, we investigated the role of conserved hydrophobic cores in fold-A glycosyltransferases (GT-As), a large superfamily of enzymes that catalyze formation of glycosidic linkages between diverse donor and acceptor substrates through distinct catalytic mechanisms (inverting versus retaining). Using hidden Markov models and protein structural alignments, we identify similarities in the phosphate-binding cassette (PBC) of GT-As and unrelated nucleotide-binding proteins, such as UDP-sugar pyrophosphorylases. We demonstrate that GT-As have diverged from other nucleotide-binding proteins through structural elaboration of the PBC and its unique hydrophobic tethering to the F-helix, which harbors the catalytic base (xED-Asp). While the hydrophobic tethering is conserved across diverse GT-A fold enzymes, some families, such as B3GNT2, display variations in tethering interactions and core packing. We evaluated the structural and functional impact of these core variations through experimental mutational analysis and molecular dynamics simulations and find that some of the core mutations (T336I in B3GNT2) increase catalytic efficiency by modulating the conformational occupancy of the catalytic base between “D-in” and acceptor-accessible “D-out” conformation. Taken together, our studies support a model of evolution in which the GT-A core evolved progressively through elaboration upon an ancient PBC found in diverse nucleotide-binding proteins, and malleability of this core provided the structural framework for evolving new catalytic and substrate-binding functions in extant GT-A fold enzymes. 相似文献
17.
Matteo Cagiada Kristoffer E Johansson Audrone Valanciute Sofie V Nielsen Rasmus Hartmann-Petersen Jun J Yang Douglas M Fowler Amelie Stein Kresten Lindorff-Larsen 《Molecular biology and evolution》2021,38(8):3235
Understanding and predicting how amino acid substitutions affect proteins are keys to our basic understanding of protein function and evolution. Amino acid changes may affect protein function in a number of ways including direct perturbations of activity or indirect effects on protein folding and stability. We have analyzed 6,749 experimentally determined variant effects from multiplexed assays on abundance and activity in two proteins (NUDT15 and PTEN) to quantify these effects and find that a third of the variants cause loss of function, and about half of loss-of-function variants also have low cellular abundance. We analyze the structural and mechanistic origins of loss of function and use the experimental data to find residues important for enzymatic activity. We performed computational analyses of protein stability and evolutionary conservation and show how we may predict positions where variants cause loss of activity or abundance. In this way, our results link thermodynamic stability and evolutionary conservation to experimental studies of different properties of protein fitness landscapes. 相似文献
18.
Recently, it was reported that ultraviolet (UV) illumination could trigger the unfolding of proteins by disrupting the buried disulfide bonds. However, the consequence of such unfolding has not been adequately evaluated. Here, we report that unfolded chicken egg white lysozyme (CEWL) triggered by UV illumination can form uniform globular aggregates as confirmed by dynamic light scattering, atomic force microscopy, and transmission electron microscopy. The assembling process of such aggregates was also monitored by several other methods, such as circular dichroism, fluorescence spectroscopy, mass spectrometry based on chymotrypsin digestion, ANS-binding assay, Ellman essay, and SDS-PAGE. Our finding is that due to the dissociation of the native disulfide bonds by UV illumination, CEWL undergoes drastic conformational changes resulting in the exposure of some hydrophobic residues and free thiols. Subsequently, these partially unfolded molecules self-assemble into small granules driven by intermolecular hydrophobic interaction. With longer UV illumination or longer incubation time, these granules can further self-assemble into larger globular aggregates. The combined effects from both the hydrophobic interaction and the formation of intermolecular disulfide bonds dominate this process. Additionally, similar aggregation behavior can also be found in other three typical disulfide-bonded proteins, that is, α-lactalbumin, RNase A, and bovine serum albumin. Thus, we propose that such aggregation behavior might be a general mechanism for some disulfide-bonded proteins under UV irradiation. 相似文献
19.
为了提高甘露聚糖酶ManA在毕赤酵母中分泌表达的酶活,选择毕赤酵母内质网未折叠蛋白反应(Unfolded protein response,UPR)激活调控因子HAC1与5种毕赤酵母蛋白折叠相关的分子伴侣ERO1、PDI、PDI1、CPR5、BiP,通过构建pPICZA-HAC1等6种胞内表达重组质粒,分别电转化至分泌表达ManA的毕赤酵母重组菌中胞内共表达,并分析其重组菌摇瓶发酵时ManA表达的影响。结果发现在摇瓶发酵水平,胞内共表达HAC1、ERO1、PDI的重组菌发酵上清液中的ManA酶活力分别提高了26%、15%、20%,其重组菌发酵上清液的酶活力分别达到1 014 U/mL、925 U/mL、965 U/mL。通过对各重组菌上清液酶活力、胞内滞留酶活力、上清液蛋白浓度数据进行分析,进一步选择将HAC1、ERO1、PDI进行两基因或三基因组合,并分别在分泌表达ManA的重组菌胞内共表达,但各共表达重组菌发酵上清液的酶活力都没有进一步的提升。单独共表达HAC1或者分子伴侣ERO1、PDI可以辅助ManA的正确折叠,提高其蛋白表达。 相似文献
20.
Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein. 下载免费PDF全文
L. C. Seefeldt 《Protein science : a publication of the Protein Society》1994,3(11):2073-2081
Docking of the nitrogenase component proteins, the iron protein (FeP) and the molybdenum-iron protein (MoFeP), is required for MgATP hydrolysis, electron transfer between the component proteins, and substrate reductions catalyzed by nitrogenase. The present work examines the function of 3 charged amino acids, Arg 140, Glu 141, and Lys 143, of the Azotobacter vinelandii FeP in nitrogenase component protein docking. The function of these amino acids was probed by changing each to the neutral amino acid glutamine using site-directed mutagenesis. The altered FePs were expressed in A. vinelandii in place of the wild-type FeP. Changing Glu 141 to Gln (E141Q) had no adverse effects on the function of nitrogenase in whole cells, indicating that this charged residue is not essential to nitrogenase function. In contrast, changing Arg 140 or Lys 143 to Gln (R140Q and K143Q) resulted in a significant decrease in nitrogenase activity, suggesting that these charged amino acid residues play an important role in some function of the FeP. The function of each amino acid was deduced by analysis of the properties of the purified R140Q and K143Q FePs. Both altered proteins were found to support reduced substrate reduction rates when coupled to wild-type MoFeP. Detailed analysis revealed that changing these residues to Gln resulted in a dramatic reduction in the affinity of the altered FeP for binding to the MoFeP. This was deduced in FeP titration, NaCl inhibition, and MoFeP protection from Fe2+ chelation experiments.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献